মিশ্র ফাংশন সংক্রান্ত
limx→0xtan2x−2xtanx(1−cos2x)2 \displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}} x→0lim(1−cos2x)2xtan2x−2xtanx is equal to
2
-2
1/2
-1/2
limx→0xtan2x−2xtanx4sin4x\displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{4 \sin ^{4} x}x→0lim4sin4xxtan2x−2xtanx
=limx→0x4sin4x[2tanx1−tan2x−2tanx]=\displaystyle \lim _{x \rightarrow 0} \dfrac{x}{4 \sin ^{4} x}\left[\dfrac{2 \tan x}{1-\tan ^{2} x}-2 \tan x\right]=x→0lim4sin4xx[1−tan2x2tanx−2tanx]
=limx→0xtan3x2sin4x(1−tan2x)=\displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan ^{3} x}{2 \sin ^{4} x\left(1-\tan ^{2} x\right)}=x→0lim2sin4x(1−tan2x)xtan3x
=12limx→0xsinx1cos3x11−tan2x=\dfrac{1}{2} \lim _{x \rightarrow 0} \dfrac{x}{\sin x} \dfrac{1}{\cos ^{3} x} \dfrac{1}{1-\tan ^{2} x}=21limx→0sinxxcos3x11−tan2x1
=12×1×113×11−0=12=\dfrac{1}{2} \times 1 \times \dfrac{1}{1^{3}} \times \dfrac{1}{1-0}=\dfrac{1}{2}=21×1×131×1−01=21
If the function f(x)=(1−x)tanπx2f(x) = (1 - x)\tan \dfrac{{\pi x}}{2}f(x)=(1−x)tan2πx is continuous at x=1x = 1x=1 ,then f(1)=f(1)=f(1)=
limx→2x2−5x+6x2+2x−8 \lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x^{2}+2 x-8} limx→2x2+2x−8x2−5x+6 এর মান নির্ণয় কর।
limx→0(1−cos2x)sin5xx2sin3x=?\displaystyle\lim_{x\rightarrow 0}\dfrac{(1-\cos 2x)\sin 5x}{x^2\sin 3x}=?x→0limx2sin3x(1−cos2x)sin5x=?
limx→π/2sinx−(sinx)sinx1−sinx+Insinx\displaystyle\lim_{x\to \pi/2} \dfrac{sinx-(sinx)^{sin x}}{1-sin x + In sin x}x→π/2lim1−sinx+Insinxsinx−(sinx)sinx is equal to-