লিমিট

limx0(sinxxx)(sin1x)\displaystyle \lim_{x\rightarrow 0}(\frac{\sin x-x}{x})(\sin\frac{1}{x}) is:

হানি নাটস

sinx=xx33!+x55!....(1)sin x = x -\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}....(1)

sin xx=x33!+x55!x77!sin\ x-x =-\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}-\dfrac{x^{7}}{7!}

sin xxx=x23!+x45!x67!....=0 (as x found to 0)\dfrac{sin\ x-x}{x} =-\dfrac{x^{2}}{3!}+\dfrac{x^{4}}{5!}-\dfrac{x^{6}}{7!}....=0\ (as\ x\ found\ to\ 0)

sin(1x)(\dfrac{1}{x}) is an oscillatory function means same finite no.

0×finite no.=00\times finite\ no.=0

লিমিট টপিকের ওপরে পরীক্ষা দাও