UV আকারের (Integration by parts)
∫ln(1+x)1+xdx equals\displaystyle\int {\dfrac{{\ln \left( {1 + {x}} \right)}}{{1 + {x}}}} dx\,equals∫1+xln(1+x)dxequals
(ln(1+x))22\dfrac {(\ln (1+x))^2}22(ln(1+x))2
−πln(1+x) - \pi \ln (1+x)−πln(1+x)
π2ln(1+x)\frac{\pi }{2}\ln (1+x)2πln(1+x)
−π2ln(1+x) - \frac{\pi }{2}\ln (1+x)−2πln(1+x)
Given
∫x3exdx=f(x)+c \int x^{3} e^{x} dx = f{\left ( x \right )} + c ∫x3exdx=f(x)+c হয় তবে f(x)=?
Evaluate: ∫xxln(ex)dx\int x ^ { x } \ln ( e x ) d x∫xxln(ex)dx
∫f(x)dx=x+e2x \int f{\left ( x \right )} dx = x + e^{2 x} ∫f(x)dx=x+e2x হলে f(x)=?
The integrating factor of the differential equation dydx(xloge x)+y=2loge x\dfrac{dy}{dx}\left(x\log _e\:x\right)+y=2\log _e\:xdxdy(xlogex)+y=2logex is given by