UV আকারের (Integration by parts)

ln(1+x)1+xdxequals\displaystyle\int {\dfrac{{\ln \left( {1 + {x}} \right)}}{{1 + {x}}}} dx\,equals

হানি নাটস

Given

ln(1+x)1+xdx\displaystyle \int \dfrac {\ln (1+x)}{1+x}dx

let 1+x=t1+x=t

    dx=dt\implies dx=dt

    lnttdt\implies \displaystyle \int \dfrac {\ln t}{t}dt

Let lnt=p\ln t=p

    1tdt=dp\implies \dfrac 1tdt =dp

    pdp\implies \displaystyle \int pdp

    p22\implies \dfrac{p^2}{2}

    (lnt)22\implies \dfrac {(\ln t)^2}2

    (ln(1+x))22\implies \dfrac {(\ln (1+x))^2}2

UV আকারের (Integration by parts) টপিকের ওপরে পরীক্ষা দাও