বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত

Equation of a circle whose centre is in II quadrant as (α, β)\left(\alpha,\ \beta\right) and touches xx-axis will be:

হানি নাটস

Given that: A circle centre in I quadrant as (α,β)(\alpha,\beta) and touches x-axis.

To find: Equation of the circle.
Solution:
Refer image,
\therefore Centre (c)
=(α,β)=(\alpha,\beta)
CP\because\,CP is parallel to y-axis
\therefore Radius (p) =CP=(x2x2)2+(y2y1)2=CP=\sqrt{(x_2-x_2)^2+(y_2-y_1)^2}
=(αα)2+(0β)2=\sqrt{(\alpha-\alpha)^2+(0-\beta)^2}
=β2=\sqrt{\beta^2}
=β=\beta
\therefore Equation of the circle is
(xα)2+(yβ)2=β2(x-\alpha)^2+(y-\beta)^2=\beta^2
x22αx+α2+y22βy+β2=β2\Rightarrow x^2-2\alpha x+\alpha^2+y^2-2\beta y+\beta^2=\beta^2
x2+y22αx2βy+α2=0\Rightarrow x^2+y^2-2\alpha x-2\beta y+\alpha^2=0
Hence, the required is
x2+y22αx2βy+α2=0x^2+y^2-2\alpha x-2\beta y+\alpha^2=0

বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত টপিকের ওপরে পরীক্ষা দাও