intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ)
Evaluate: ∫x2+1x4+1dx\displaystyle\int { \dfrac { { x }^{ 2 }+1 }{ { x }^{ 4 }+1 } dx } ∫x4+1x2+1dx equals ;
12tan−1(x2−12x)+C\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\dfrac{x^{2}-1}{\sqrt{2}x}\right)+C21tan−1(2xx2−1)+C
12tan−1(1−x22x)+C\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\dfrac{1-x^{2}}{\sqrt{2}x}\right)+C21tan−1(2x1−x2)+C
12tan−1(x2−12x)+C\dfrac{1}{2}\tan^{-1}\left(\dfrac{x^{2}-1}{\sqrt{2}x}\right)+C21tan−1(2xx2−1)+C
12tan−1(1−x22x)+C\dfrac{1}{2}\tan^{-1}\left(\dfrac{1-x^{2}}{\sqrt{2}x}\right)+C21tan−1(2x1−x2)+C
∫x2+1x4+1.dx\displaystyle \int \dfrac{x^2 + 1}{x^4 + 1} . dx∫x4+1x2+1.dx
∫x2+x+1x2−x+1dx \int \frac{x^{2}+x+1}{x^{2}-x+1} d x ∫x2−x+1x2+x+1dx
P=(x−4)2(x−3) P=(x-4)^{2}(x-3) P=(x−4)2(x−3) এবং g(x,y)=x2+y2 g(x, y)=x^{2}+y^{2} g(x,y)=x2+y2
দৃশ্যকল্প: g(x)=cot−1x,f(x)=x g(x)=\cot ^{-1}x, f(x)=x g(x)=cot−1x,f(x)=x
P=(x−4)2(x−3) P=(x-4)^{2}(x-3) P=(x−4)2(x−3)
f(x)=x2 f(x)=x^{2} f(x)=x2 এবং x2a2+y2b2=1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1