intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ)

Evaluate: x2+1x4+1dx\displaystyle\int { \dfrac { { x }^{ 2 }+1 }{ { x }^{ 4 }+1 } dx } equals ;

হানি নাটস

x2+1x4+1.dx\displaystyle \int \dfrac{x^2 + 1}{x^4 + 1} . dx

1+x2x2+x2.dx\displaystyle \int \dfrac{1 + x^{-2}}{x^2 + x^{-2}}. dx [divide with x2x^2]
1+x2x2+x22+2.dx\displaystyle \int \dfrac{1 + x^{-2}}{x^2 + x^{-2} -2 + 2} .dx
1+x2(xx1)2+2dx\displaystyle \int \dfrac{1 + x^{-2}}{(x - x^{-1})^2 + 2} dx
u=xx1u = x - x^{-1}
dUU2+2=12tan1U2+C\displaystyle \int \dfrac{dU}{U^2 + 2} = \dfrac{1}{\sqrt{2}} \tan^{-1} \dfrac{U}{\sqrt{2}} + C
=12tan1(xx1)2+C= \dfrac{1}{\sqrt{2}} \tan^{-1} \dfrac{(x - x^{-1})}{\sqrt{2}} + C
=12tan1(x212x)+C= \dfrac{1}{\sqrt{2}} \tan^{-1} \left(\dfrac{x^2 - 1}{\sqrt{2} x} \right) + C

intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ) টপিকের ওপরে পরীক্ষা দাও