রেখা বিভাজন ও অনুপাত

Find a point on the y-axis which is equidistant from the points (3,4)(-3,4) and (2,3)(2,3).

হানি নাটস

Let the point on the x-axis be (0,y) (0,y)

Distance between (0,y) (0,y) and (3,4)=(30)2+(4y)2=9+42+y28y=y28y+25 (-3,4) = \sqrt { \left( -3-0 \right) ^{ 2 }+\left( 4 - y \right) ^{ 2 } } = \sqrt { 9 + { 4}^{ 2 }+ { y }^{ 2 } - 8y } = \sqrt { { y }^{ 2 } - 8y + 25 }

Distance between (0,y) (0,y) and (2,3)=(20)2+(3y)2=4+32+y26y=y26y+13 (2,3) = \sqrt { \left( 2-0 \right) ^{ 2 }+\left( 3 - y \right) ^{ 2 } } = \sqrt { 4 + { 3}^{ 2 }+ { y }^{ 2 } - 6y } = \sqrt { { y }^{ 2 } - 6y + 13 }

As the point (0,y) (0,y) is equidistant from the two points, both the distances

calculated are equal.

y28y+25=y26y+13 \sqrt { { y }^{ 2 } - 8y + 25 } = \sqrt { { y }^{ 2 } - 6y + 13 }

=>y28y+25=y26y+13 => { y }^{ 2 } - 8y + 25 = { y }^{ 2 } - 6y + 13

12=2y 12 = 2y

y=6 y = 6

Thus, the point is (0,6) (0,6)

রেখা বিভাজন ও অনুপাত টপিকের ওপরে পরীক্ষা দাও