দ্বিপদী বিস্তৃতি

Find the middle term(s) in the expansion of :
(2xx24)9\left(2x-\dfrac{x^{2}}{4}\right)^{9}

কাজু বাদাম

Given expansion term is (2xx24)9\left(2x-\dfrac{x^{2}}{4}\right)^{9}

n=9=n=9= odd

middle term =(9+12)th+(9+32)th=\left(\dfrac{9+1}{2}\right)^{th}+\left(\dfrac{9+3}{2}\right)^{th}

=5th=5^{th} or 6th6^{th} term

T5=T4+1= 9C4(2x)5(x24)4T_{5}=T_{4+1}=\ ^{9}C_{4}(2x)^{5}\left(\dfrac{-x^{2}}{4}\right)^{4}

=9!4!5!25×x5(1)4×x844=\dfrac{9!}{4!5!}2^{5}\times x^{5}(-1)^{4}\times \dfrac{x^{8}}{4^{4}}

=9×8×7×6×5!4×3×2×5!×25.x13.125=\dfrac{9\times 8\times 7\times 6\times 5!}{4\times 3\times 2\times 5!}\times \dfrac{2^{5}.x^{13}.1}{2^{5}}

T5=634x13T_{5}=\dfrac{63}{4}x^{13}

T6=T5+1= 9C5(2x)4(x24)5T_{6}=T_{5+1}=\ ^{9}C_{5}(2x)^{4}\left(\dfrac{-x^{2}}{4}\right)^{5}

=9!4!5!×24x4(1)5x1045=\dfrac{9!}{4!5!}\times 2^{4}x^{4}(-1)^{5}\dfrac{x^{10}}{4^{5}}

=9×8×7×6×5!4×3×2×5!24x14210=\dfrac{9\times 8\times 7\times 6\times 5!}{4\times 3\times 2\times 5!}2^{4}\dfrac{x^{14}}{2^{10}}

T6=6332x14T_{6}=\dfrac{-63}{32}x^{14}

দ্বিপদী বিস্তৃতি টপিকের ওপরে পরীক্ষা দাও