সরলরেখার সঞ্চারপথ

Find the relation between xx and yy such that the point P(x,y)P(x, y) is equidistant from the points A(1,4)A(1, 4) and B(1,2)B(-1, 2).

হানি নাটস

Let P(x,y)P\left(x,y\right) be equidistance from the points A(1,4)A\left(1,4\right) and B(1,2)B\left(−1,2\right)

Given:AP=BPAP=BP

AP2=BP2{AP}^{2}={BP}^{2}

By distance formula,

(x1)2+(y4)2=(x+1)2+(y2)2{\left(x-1\right)}^{2}+{\left(y-4\right)}^{2}={\left(x+1\right)}^{2}+{\left(y-2\right)}^{2}

x22x+1+y28y+16=x2+2x+1+y24y+4\Rightarrow\,{x}^{2}-2x+1+{y}^{2}-8y+16={x}^{2}+2x+1+{y}^{2}-4y+4

2x+18y+162x1+4y4=0\Rightarrow\,-2x+1-8y+16-2x-1+4y-4=0

4x4y+12=0\Rightarrow\,-4x-4y+12=0

x+y3=0\Rightarrow\,x+y-3=0 gives the relation between xx and yy.

সরলরেখার সঞ্চারপথ টপিকের ওপরে পরীক্ষা দাও