ddx (e−x+e1x)=?\frac{d}{dx}\ \left(e^{-x}+e^\frac{1}{x}\right)=? dxd (e−x+ex1)=?
e−x\\e^{-x} e−x
−(e−x+e1xx2)\\-\left(e^{-x}+\frac{e^\frac{1}{x}}{x^2}\right) −(e−x+x2ex1)
e1xe−x\\\frac{e^\frac{1}{x}}{e^{-x}} e−xex1
e−x−1x2\\e^{-x}-\frac{1}{x^2} e−x−x21
e−x.(−1)+e1x.(−1x2)=−(e−x+e1xx2)e^{-x}.\left(-1\right)+e^\frac{1}{x}.\left(-\frac{1}{x^2}\right)=-\left(e^{-x}+\frac{e^\frac{1}{x}}{x^2}\right) e−x.(−1)+ex1.(−x21)=−(e−x+x2ex1)