লিমিট

Function f(x)=x22x4is\left| {x - 2} \right| - 2\left| {x - 4} \right|\,is discontinous at:

হানি নাটস

f(x)=x22x4f(x)=\mid x-2 \mid -2\mid x-4 \mid
f(x)={(x2)+2(x4),x<2(x2)+2(x4),2x4(x2)2(x4)x>4}\therefore f\left(x \right)=\begin{Bmatrix} -(x-2)+2(x-4),\qquad x<2\\ (x-2)+2(x-4), \qquad 2\le x \le 4\\ (x-2)-2(x-4) \qquad x\gt 4 \\ \end{Bmatrix}
At x=2x=2
L.H.L(Left Hand Limit)
limx 2=(22)+2(24)=4\displaystyle\lim_{x\to\ 2^{-}}=-(2-2)+2(2-4) = -4
R.H.LRight Hand Limit/0
limx 2+=(22)+2(24)=4\displaystyle\lim_{x\to\ 2^{+}}=(2-2)+2(2-4)=-4
limx 2f(x)=limx 2+f(x)\therefore \displaystyle\lim_{x\to\ 2^{-}}f(x) = \displaystyle\lim_{x\to\ 2^{+}}f(x)
At x=4x=4
L.H.L(Left Hand Limit)
limx 4=(42)+2(44)=2\displaystyle\lim_{x\to\ 4^{-}}=(4-2)+2(4-4)=2
R.H.L(Right Hand Limit)
limx 4+=(42)2(44)=2\displaystyle\lim_{x\to\ 4^{+}}=(4-2)-2(4-4)=2
limx 4f(x)=limx 4+f(x)\therefore \displaystyle\lim_{x\to\ 4^{-}}f(x) = \displaystyle\lim_{x\to\ 4^{+}}f(x)
 f(x)\therefore \ f(x) is continuous at everywhere.

লিমিট টপিকের ওপরে পরীক্ষা দাও