ফাংশনের মান নির্ণয়
f(x)f(x)f(x) is a linear function. If f(x)=−1f(x)=-1f(x)=−1 and f(2)=14f(2)=14f(2)=14 find the value of f(15)f(15)f(15)
214214214
201201201
213213213
209209209
If f(x)=coshx+sinhxf(x)=\cosh x+\sinh x f(x)=coshx+sinhx then f(x1+x2+.......+xn)=f(x_{1}+x_{2}+.......+x_{n})=f(x1+x2+.......+xn)=
Let f(x)=∣x−x1∣+∣x−x2∣f(x)=\left | x-x_{1} \right |+\left | x-x_{2} \right |f(x)=∣x−x1∣+∣x−x2∣ where x1andx2x_{1} and x_{2}x1andx2 are distinct real numbers. Then the number of points at which f(x) is minimum is:
If x=(7+43)2n=[x]+fx = (7 + 4\sqrt {3})^{2n} = [x] + fx=(7+43)2n=[x]+f, where nϵNn \epsilon NnϵN and 0≤f<10\leq f < 10≤f<1, then x(1−f)x(1 - f)x(1−f) is equal to
The solution set of x2+5x+6=0x^{2}+5x+6=0 x2+5x+6=0 is ........