মান নির্ণয়

If 5(tan2xcos2x)=2cos2x+95\left({\tan}^{2}x-{\cos}^{2}x\right)=2\cos2x+9, then the value of cos4x\cos4x is:

হানি নাটস

We know that tan2x=sec2x1 \tan ^{2} x=\sec ^{2} x-1 and cos2x=2cos2x1 \cos 2 x=2 \cos ^{2} x-1

5(sec2x1cos2x)=2[2cos2x1]+9 \therefore 5\left(\sec ^{2} x-1-\cos ^{2} x\right)=2\left[2 \cos ^{2} x-1\right]+9

Take cos2x=t \cos ^{2} x=t

5(1t1t)=2(2t1)+95t55t=4t+755t5t2=4t2+7t9t2+12t5=0(3t+5)(3t1)=0t=53 or t=13 \begin{array}{l} \Rightarrow 5\left(\frac{1}{t}-1-t\right)=2(2 t-1)+9 \\ \Rightarrow \frac{5}{t}-5-5 t=4 t+7 \\ \Rightarrow 5-5 t-5 t^{2}=4 t^{2}+7 t \\ \Rightarrow 9 t^{2}+12 t-5=0 \\ \Rightarrow(3 t+5)(3 t-1)=0 \\ \Rightarrow t=\frac{-5}{3} \text { or } t=\frac{1}{3} \end{array}

t53 t \neq \frac{-5}{3} as the range of cos2x \cos ^{2} x is [0,1] [0,1]

Hence, cos2x=13 \cos ^{2} x=\frac{1}{3}

 Now, cos4x=2cos22x1=2[2cos2x1]21=2[2(13)1]21=291=79 \text { Now, } \begin{aligned} \cos 4 x & =2 \cos ^{2} 2 x-1 \\ & =2\left[2 \cos ^{2} x-1\right]^{2}-1 \\ & =2\left[2\left(\frac{1}{3}\right)-1\right]^{2}-1 \\ & =\frac{2}{9}-1 \\ & =\frac{-7}{9} \end{aligned}

So, option (D) is correct.

মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও