If 5(tan2x−cos2x)=2cos2x+9, then the value of cos4x is:
হানি নাটস
We know that tan2x=sec2x−1 and cos2x=2cos2x−1
∴5(sec2x−1−cos2x)=2[2cos2x−1]+9
Take cos2x=t
⇒5(t1−1−t)=2(2t−1)+9⇒t5−5−5t=4t+7⇒5−5t−5t2=4t2+7t⇒9t2+12t−5=0⇒(3t+5)(3t−1)=0⇒t=3−5 or t=31
t=3−5 as the range of cos2x is [0,1]
Hence, cos2x=31
Now, cos4x=2cos22x−1=2[2cos2x−1]2−1=2[2(31)−1]2−1=92−1=9−7
So, option (D) is correct.