If a complex number z satisfies [2z+10+10i|≤ 5√3-5 then the least principal argument of z is-
IUT 20-21
Solution: (a); ∣2z+10+10i∣≤53−5
⇒∣z+5+5i∣≤253−5⇒∣x+iy+5+5i∣≤253−5⇒∣(x+5)+i(y+5)∣≤253−5⇒(x+5)2+(y+5)2≤253−5∴(x+5)2+(y+5)2≤(253−5)2………… (i)
(i) indicates the inner side (including the perimeter) of a circle with center at C(−5,−5) and radius, r=253−5.
Here, OC=(0+5)2+(0+5)2=52 units and AC=r=253−5
Again, β=tan−1−5−5=4π and α=sin−1OCAC=sin−1(52253−5)=12π
Now, least principal argument, ∠XOA=−[2π+α+β]=−[2π+12π+4π]=−65π (Ans.)