জটিল সংখ্যার অন্যান্য

If a complex number z satisfies [2z+10+10i|≤ 5√3-5 then the least principal argument of z is-

IUT 20-21

Solution: (a); 2z+10+10i535 |2 z+10+10 \mathrm{i}| \leq 5 \sqrt{3}-5

z+5+5i5352x+iy+5+5i5352(x+5)+i(y+5)5352(x+5)2+(y+5)25352(x+5)2+(y+5)2(5352)2 (i)  \begin{array}{l} \Rightarrow|z+5+5 i| \leq \frac{5 \sqrt{3}-5}{2} \Rightarrow|x+i y+5+5 i| \leq \frac{5 \sqrt{3}-5}{2} \\ \Rightarrow|(x+5)+i(y+5)| \leq \frac{5 \sqrt{3}-5}{2} \Rightarrow \sqrt{(x+5)^{2}+(y+5)^{2}} \leq \frac{5 \sqrt{3}-5}{2} \\ \therefore(x+5)^{2}+(y+5)^{2} \leq\left(\frac{5 \sqrt{3}-5}{2}\right)^{2} \ldots \ldots \ldots \ldots \text { (i) } \end{array}

(i) indicates the inner side (including the perimeter) of a circle with center at C(5,5) C(-5,-5) and radius, r=5352 r=\frac{5 \sqrt{3}-5}{2} .

Here, OC=(0+5)2+(0+5)2=52 \mathrm{OC}=\sqrt{(0+5)^{2}+(0+5)^{2}}=5 \sqrt{2} units and AC=r=5352 \mathrm{AC}=\mathrm{r}=\frac{5 \sqrt{3}-5}{2}

Again, β=tan155=π4 \beta=\tan ^{-1}\left|\frac{-5}{-5}\right|=\frac{\pi}{4} and α=sin1ACOC=sin1(535252)=π12 \alpha=\sin ^{-1} \frac{A C}{O C}=\sin ^{-1}\left(\frac{\frac{5 \sqrt{3}-5}{2}}{5 \sqrt{2}}\right)=\frac{\pi}{12}

Now, least principal argument, XOA=[π2+α+β]=[π2+π12+π4]=5π6 \angle \mathrm{XOA}=-\left[\frac{\pi}{2}+\alpha+\beta\right]=-\left[\frac{\pi}{2}+\frac{\pi}{12}+\frac{\pi}{4}\right]=-\frac{5 \pi}{6} (Ans.)

জটিল সংখ্যার অন্যান্য টপিকের ওপরে পরীক্ষা দাও