জটিল সংখ্যা ও জ্যামিতিক প্রতিরূপ

If a+b+c=0a+b+c=0 then the equation 3ax2+2bx+c=03{ ax }^{ 2 }+2bx+c=0 has

হানি নাটস

Given a+b+c=0 \mathrm{a}+\mathrm{b}+\mathrm{c}=0 and

Let f(x)=3ax2+2bx+c \mathrm{f}^{\prime}(\mathrm{x})=3 a \mathrm{x}^{2}+2 \mathrm{bx}+\mathrm{c}

f(x)=ax3+bx2+cx+d (on integration)  \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d} \text { (on integration) }

Rolle's theorem states that if f(x) \mathrm{f}(\mathrm{x}) be continuous on [a,b] [\mathrm{a}, \mathrm{b}] , differentiable on (a,b) (\mathrm{a}, \mathrm{b}) and f(a)=f(b) f(a)=f(b) then there exists some c c between a and b \mathrm{b} such that f(c)=0 \mathrm{f}^{\prime}(\mathrm{c})=0

from the options let (a,b)=(0,1) (\mathrm{a}, \mathrm{b})=(0,1)

f(0)=d f(0)=d and f(1)=a+b+c+d=d f(1)=a+b+c+d=d (since, a+b+c=0 \mathrm{a}+\mathrm{b}+\mathrm{c}=0 )

Therefore, f(0)=f(1) f(0)=f(1) . Hence, there exists some c between 0 and 1 such that f(c)=0 \mathrm{f}^{\prime}(\mathrm{c})=0

Therefore, the equation has atleast one root lying on (0,1) (0,1)

জটিল সংখ্যা ও জ্যামিতিক প্রতিরূপ টপিকের ওপরে পরীক্ষা দাও