পরমমান (Modulus)
If α, β, γ\alpha,\ \beta,\ \gammaα, β, γ are modulus of the complex number 3+4i,−5+12i, 1−i3+4i, -5+12i,\ 1-i3+4i,−5+12i, 1−i, then the increasing order for α,β\alpha, \beta α,β and γ\gammaγ is
α, γ, β\alpha,\ \gamma,\ \betaα, γ, β
α, β, γ\alpha,\ \beta,\ \gammaα, β, γ
γ, α, β\gamma,\ \alpha,\ \betaγ, α, β
can't be determined
α=32+42=5\alpha =\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } =5α=32+42=5
β=(5)2+(12)2=13\beta =\sqrt{(5)^{2}+(12)^{2}}=13β=(5)2+(12)2=13
γ=1+12=2\gamma =\sqrt{1+1^{2}}=\sqrt{2}γ=1+12=2
⇒γ<α<β\Rightarrow \gamma < \alpha < \beta⇒γ<α<β
−3i+23 - \sqrt{3} i + 2 \sqrt{3} −3i+23 জটিল সংখ্যার মডুলাস কত ?
If ∣z−4z∣=2\left| {z - \dfrac{4}{z}} \right| = 2z−z4=2 , then the maximum value of∣z∣\left| z \right|∣z∣ is
Z1= -3i এবং Z2= 1+i
Z2Z1 \frac{Z_{2}}{Z_{1}} Z1Z2 এর পরমমান কত?
If ∣z∣=1|z|=1∣z∣=1 and ∣ω−1∣=1|\omega -1| =1∣ω−1∣=1 where z,ω∈Cz, \omega \in Cz,ω∈C, then the largest set of values of ∣2z−1∣2+∣2ω−1∣2|2z - 1|^2 + | 2\omega -1|^2∣2z−1∣2+∣2ω−1∣2 equals: