ফাংশনের মান নির্ণয়
If (2x+3)(3x−4)(x−1)(4x+5)=f(x)−59(x−1)+3118(4x+5)\dfrac {(2x+3)(3x-4)}{(x-1)(4x+5)}=f(x)-\dfrac {5}{9(x-1)}+\dfrac {31}{18(4x+5)}(x−1)(4x+5)(2x+3)(3x−4)=f(x)−9(x−1)5+18(4x+5)31, then f(x)=f(x)=f(x)=
111
12\dfrac {1}{2}21
−32\dfrac {-3}{2}2−3
32\dfrac {3}{2}23
(2x+3)(3x−4)(x−1)(4x+5)=f(x)−59(x−1)+3118(4x+5)⇒(2x+3)(3x−4)(x−1)(4x+5)+59(x−1)−3118(4x+5)=f(x) \begin{array}{l}\frac{(2 x+3)(3 x-4)}{(x-1)(4 x+5)}=f(x)-\frac{5}{9(x-1)}+\frac{31}{18(4 x+5)} \\ \Rightarrow \frac{(2 x+3)(3 x-4)}{(x-1)(4 x+5)}+\frac{5}{9(x-1)}-\frac{31}{18(4 x+5)}=f(x)\end{array} (x−1)(4x+5)(2x+3)(3x−4)=f(x)−9(x−1)5+18(4x+5)31⇒(x−1)(4x+5)(2x+3)(3x−4)+9(x−1)5−18(4x+5)31=f(x)
⇒18(2x+3)(3x−4)+10(4x+5)−31(x−1)18(x−1)(4x+5)=f(x)⇒18{6x2−8x+9x−12}+40x+50−31x+3118(x−1)(4x+5)=f(x) \begin{array}{l}\Rightarrow \frac{18(2 x+3)(3 x-4)+10(4 x+5)-31(x-1)}{18(x-1)(4 x+5)}=f(x) \\ \Rightarrow \frac{18\left\{6 x^{2}-8 x+9 x-12\right\}+40 x+50-31 x+31}{18(x-1)(4 x+5)}=f(x)\end{array} ⇒18(x−1)(4x+5)18(2x+3)(3x−4)+10(4x+5)−31(x−1)=f(x)⇒18(x−1)(4x+5)18{6x2−8x+9x−12}+40x+50−31x+31=f(x)
⇒108x2+18x−216+40x+50−31x+3118(x−1)(4x+5)=f(x) \Rightarrow \frac{108 x^{2}+18 x-216+40 x+50-31 x+31}{18(x-1)(4 x+5)}=f(x) ⇒18(x−1)(4x+5)108x2+18x−216+40x+50−31x+31=f(x)
⇒108x2+27x−13518(x−1)(4x+5)=f(x)⇒27(4x2+x−5)18(x−1)(4x+5)=f(x) \begin{array}{l}\Rightarrow \frac{108 x^{2}+27 x-135}{18(x-1)(4 x+5)}=f(x) \\ \Rightarrow \frac{27\left(4 x^{2}+x-5\right)}{18(x-1)(4 x+5)}=f(x)\end{array} ⇒18(x−1)(4x+5)108x2+27x−135=f(x)⇒18(x−1)(4x+5)27(4x2+x−5)=f(x)
⇒27{4x2+5x−4x−5}18(x−1)(4x+5)=f(x)⇒32.x(4x+5)−1(4x+5)(x−1)(4x+5)=f(x) \begin{array}{l}\Rightarrow \frac{27\left\{4 x^{2}+5 x-4 x-5\right\}}{18(x-1)(4 x+5)}=f(x) \\ \Rightarrow \frac{3}{2} . \frac{x(4 x+5)-1(4 x+5)}{(x-1)(4 x+5)}=f(x)\end{array} ⇒18(x−1)(4x+5)27{4x2+5x−4x−5}=f(x)⇒23.(x−1)(4x+5)x(4x+5)−1(4x+5)=f(x)
⇒32⋅(x−1)⋅(4x+5)(x−1)(4x+5)=f(x) \Rightarrow \frac{3}{2} \cdot \frac{(x-1) \cdot(4 x+5)}{(x-1)(4 x+5)}=f(x) ⇒23⋅(x−1)(4x+5)(x−1)⋅(4x+5)=f(x)
⇒f(x)=32\Rightarrow f(x)=\frac{3}{2} ⇒f(x)=23
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
f(x)=sinx f(x)=\sin x f(x)=sinx
f(π10)+f(π2−π10)f(π2−3π20) \frac{f\left(\frac{\pi}{10}\right)+f\left(\frac{\pi}{2}-\frac{\pi}{10}\right)}{f\left(\frac{\pi}{2}-\frac{3 \pi}{20}\right)} f(2π−203π)f(10π)+f(2π−10π) এর মান কত?
The solution set of x2+5x+6=0x^{2}+5x+6=0 x2+5x+6=0 is ........
Let A,B,CA,B,CA,B,C finite sets. Suppose then n(A)=10,n(B)=15,n(C)=20,n(A∩B)=8n(A)=10, n(B)=15, n(C)=20, n(A\cap B)=8n(A)=10,n(B)=15,n(C)=20,n(A∩B)=8 and n(B∩C)=9n(B\cap C)=9n(B∩C)=9. Then the possible value of n(A∪B∪C)n(A\cup B\cup C)n(A∪B∪C) is
একটি ফাংশন f f f অসীম সীমা (−∞,∞) (-\infty, \infty) (−∞,∞)-তে নিম্নরূপে সংজ্ঞায়িত:
f(x)={αx+β, যখন x≤0β2x−α, যখন 0<x≤035x−5,যখন x>3 f(x)=\left\{\begin{array}{l} \alpha x+\beta, \text { যখন}~ x \leq 0 \\ \beta^{2} x-\alpha, \text { যখন}~0<x\le 03 \\ 5x-5,যখন~ x>3 \end{array}\right. f(x)=⎩⎨⎧αx+β, যখন x≤0β2x−α, যখন 0<x≤035x−5,যখন x>3