লঘুমান গুরুমান বিষয়ক
If x2f(4a)=y2f(a2−5)\dfrac{x^2}{f(4a)}=\dfrac{y^2}{f(a^2-5)}f(4a)x2=f(a2−5)y2 respresents and ellipse with major axis as y-axis and fff is a decreasing function, then
a∈(−∞,1)a \in (-\infty, 1)a∈(−∞,1)
a∈(5,∞)a \in (5, \infty)a∈(5,∞)
a∈(1,4)a \in (1, 4)a∈(1,4)
a∈(−1,5)a \in (-1, 5)a∈(−1,5)
Since y-axis is major axis.
⇒f(4a)<f(a2−5)\Rightarrow f(4a) < f(a^2-5)⇒f(4a)<f(a2−5)
⇒4a>a2−5\Rightarrow 4a > a^2-5⇒4a>a2−5 (Q fff is decreasing)
⇒a2−4a−5<0\Rightarrow a^2-4a - 5 < 0⇒a2−4a−5<0
⇒a∈(−1,5)\Rightarrow a \in (-1, 5)⇒a∈(−1,5)
দৃশ্যকল্প-I: y(x+1)(x+2)−x+4 y(x+1)(x+2)-x+4 y(x+1)(x+2)−x+4
দৃশ্যকল্প-II: g(x)=3x3−6x2−5x+1 \mathrm{g}(\mathrm{x})=3 \mathrm{x}^{3}-6 \mathrm{x}^{2}-5 \mathrm{x}+1 g(x)=3x3−6x2−5x+1
Let f(x)={x3/5x≤1−(x−2)3x>1f\left( x \right) =\left\{ \begin{matrix} { x }^{ { 3 }/{ 5 } }\quad \quad \quad x\le 1 \\ -{ \left( x-2 \right) }^{ 3 }\quad x>1 \end{matrix} \right. f(x)={x3/5x≤1−(x−2)3x>1
then the number of critical points on the graph of the function is
If for all x,yx, yx,y the function f is defined by; f(x)+f(y)+f(x)⋅f(y)=1f(x)+f(y)+f(x)\cdot f(y)=1f(x)+f(y)+f(x)⋅f(y)=1 and f(x)>0f(x) > 0f(x)>0.When f(x)f(x)f(x) is differentiable f′(x)=f'(x)= f′(x)=,
xlnx \frac{x}{\ln{x}} lnxx ফাংশনের সর্বনিম্ন মান নিচের কোনটি?