মান নির্ণয়
If (3−1)sinθ+(3+1)cosθ=2,\displaystyle \left ( \sqrt{3}-1 \right )\sin \theta +\left ( \sqrt{3}+1 \right )\cos \theta=2,(3−1)sinθ+(3+1)cosθ=2, then for n∈I,θ=\displaystyle n \in I,\theta=n∈I,θ=
2nπ±π12\displaystyle 2n\pi \pm \dfrac {\pi}{12}2nπ±12π
nπ+(−1)nπ4+π12\displaystyle n\pi +(-1)^{n} \dfrac{\pi}4 +\dfrac {\pi}{12}nπ+(−1)n4π+12π
2nπ±π4+π12\displaystyle 2n\pi\pm \dfrac {\pi}4+\dfrac{\pi}{12}2nπ±4π+12π
nπ+(−1)nπ+5π12\displaystyle n\pi+(-1)^{n} \pi +\dfrac {5 \pi}{12}nπ+(−1)nπ+125π
Let 3+1=rcosα\sqrt{3} + 1 = r \cos \alpha3+1=rcosα and 3−1=rsinα\sqrt{3} - 1 = r \sin \alpha3−1=rsinα
then, r=(3+1)2+(3−1)2r = \sqrt{(\sqrt{3} + 1)^2 + (\sqrt{3} -1)^2}r=(3+1)2+(3−1)2
r=3+1+23+3+1−23r = \sqrt{3 + 1 + 2\sqrt{3} + 3 + 1- 2\sqrt{3}}r=3+1+23+3+1−23
r=8r = \sqrt{8}r=8
r=22r = 2\sqrt{2}r=22
Also, tanα=sinαcosα\tan \alpha = \dfrac{\sin \alpha}{\cos \alpha}tanα=cosαsinα
tanα=3−13+1\tan \alpha = \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1}tanα=3+13−1
tanα=1−131+13\tan \alpha = \dfrac{1 - \dfrac{1}{\sqrt{3}}}{1 + \dfrac{1}{\sqrt{3}}}tanα=1+311−31
tanα=tan(π4−π6)\tan \alpha = \tan (\dfrac{\pi}{4} - \dfrac{\pi}{6})tanα=tan(4π−6π)
tanα=tanπ12\tan \alpha = \tan \dfrac{\pi}{12}tanα=tan12π
Now, (3−1)sinθ+(3+1)cosθ=2\displaystyle \left ( \sqrt{3}-1 \right )\sin \theta +\left ( \sqrt{3}+1 \right )\cos \theta=2(3−1)sinθ+(3+1)cosθ=2
rsinαsinθ+rcosαcosθ=2\displaystyle r\sin \alpha\sin \theta + r\cos \alpha\cos \theta=2rsinαsinθ+rcosαcosθ=2
rcos(θ−α)=2r\cos(\theta - \alpha) = 2rcos(θ−α)=2
22cos(θ−π12)=22 \sqrt{2} \cos(\theta - \dfrac{\pi}{12}) = 222cos(θ−12π)=2
cos(θ−π12)=12\cos (\theta - \dfrac{\pi}{12}) = \dfrac{1}{\sqrt{2}}cos(θ−12π)=21
θ−π12=2nπ±π4\theta - \dfrac{\pi}{12} = 2n\pi \pm \dfrac{\pi}{4}θ−12π=2nπ±4π
θ=2nπ±π4+π12\theta = 2n \pi \pm \dfrac{\pi}{4} + \dfrac{\pi}{12}θ=2nπ±4π+12π
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
1+tan25∘1−tan25∘= \frac{1+\tan 25^{\circ}}{1-\tan 25^{\circ}}= 1−tan25∘1+tan25∘= কত?
4sin712∘cos712∘cos15∘= 4 \sin 7 \frac{1}{2}^{\circ} \cos 7 \frac{1}{2}^{\circ} \cos 15^{\circ}= 4sin721∘cos721∘cos15∘= কত?
sin18° এর মান কত?