লিমিটের অস্তিত্বশীলতা ও বিচ্ছিন্নতা অবিচ্ছিন্নতা কেন্দ্রিক

If ff ' (0) = 0 and f(x) is a differentiable and increasing function,then lim x0 x \rightarrow 0  x.f(x2)f(x)\frac {x.f ' (x^2)}{f ' (x)}

হানি নাটস

  • This is an indeterminate form of type 0/0, so we can apply L'Hôpital's Rule.

     - Numerator: ddx[xf(x2)]=f(x2)+xf(x2)2x - Denominator: ddx[f(x)]=f(x) \begin{array}{l}\text { - Numerator: } \frac{d}{d x}\left[x \cdot f^{\prime}\left(x^{2}\right)\right]=f^{\prime}\left(x^{2}\right)+x \cdot f^{\prime \prime}\left(x^{2}\right) \cdot 2 x \\ \text { - Denominator: } \frac{d}{d x}\left[f^{\prime}(x)\right]=f^{\prime \prime}(x)\end{array}


    - As x0,x20 x \rightarrow 0, x^{2} \rightarrow 0 , so f(x2)f(0)=0 f^{\prime}\left(x^{2}\right) \rightarrow f^{\prime}(0)=0 .

    - The term xf(x2)2x x \cdot f^{\prime \prime}\left(x^{2}\right) \cdot 2 x also approaches 0 as x0 x \rightarrow 0 .

    - Therefore, the limit of the numerator's derivative is 0 .

    - The limit of the denominator's derivative is f(0) f^{\prime \prime}(0) .


    Since the limit of the numerator's derivative is 0 and the limit of the denominator's derivative is f(0) f^{\prime \prime}(0) , the overall limit is:

    limx0xf(x2)f(x)=0f(0)=0 \lim _{x \rightarrow 0} \frac{x \cdot f^{\prime}\left(x^{2}\right)}{f^{\prime}(x)}=\frac{0}{f^{\prime \prime}(0)}=0



লিমিটের অস্তিত্বশীলতা ও বিচ্ছিন্নতা অবিচ্ছিন্নতা কেন্দ্রিক টপিকের ওপরে পরীক্ষা দাও