লিমিট

If f:R(0,)f:R \rightarrow (0, \infty) be a differentiable function f(x)f(x) satisfying f(x+y)f(xy)=f(x){f(y)f(y)y},x,yϵR,(f(y)f(y)f(x+ y) - f(x - y) = f(x) \{ f(y) - f(y) - y \}, \forall x, y \epsilon R, (f(y) \neq f(-y) for all yϵR)y \epsilon R) and f(0)=2010f' (0) = 2010.

Now answer the following questions

Which of the following is true for f(x)f(x)

হানি নাটস

Here, 2f(x)=limh0(f(x+h)f(x)h+f(xxh)f(x)h)2 f' (x) = \displaystyle \lim_{h \rightarrow 0} \left ( \frac{f(x + h) - f(x)}{h} + \frac{f(x x - h) - f(x)}{-h} \right )

=limh0(f(x+h)f(xh)h) = \displaystyle \lim_{h \rightarrow 0} \left ( \frac{f(x + h) - f(x - h)}{h} \right ) (i)

2f(0)limh0(f(h)f(h)h+f(h)f(0)h)\therefore 2f'(0) \displaystyle \lim_{h \rightarrow 0} \left ( \frac{f(h) - f (-h)}{h} + \frac{f(-h) - f(0)}{-h} \right )

=limh0f(h)f(h)h = \displaystyle \lim_{h \rightarrow 0}\frac{f(h) - f(-h)}{h} ... ..(ii)

Now by given relation, we have

f(h)f(h)=f(x+h)f(xh)hf(h) - f(-h) = \frac{f(x + h) - f(x - h)}{-h} and f(0)=1f(0) = 1

From Eqs. (i) and (ii), we have f(x)f(x)=2010\frac{f'(x)}{f(x)} = 2010

\Rightarrow f(x)=e2010e,f(0)=1f(x) = e^{2010e}, f(0) = 1

{f(x)}\therefore \{ f(x) \} is non-periodic.

লিমিট টপিকের ওপরে পরীক্ষা দাও