ফাংশনের মান নির্ণয়
if f(x)=x³+x²f(1)+xf(2)+f(3).then f(2) is
-2
1
30
2
Let f(x)=2−∣x−3∣,1≤x≤5f(x)=2-|x-3|, 1 \le x \le 5f(x)=2−∣x−3∣,1≤x≤5 and for rest of the values f(x)f(x)f(x) can be obtained by using the relation f(5x)=α f(x)∀ x∈Rf(5x)=\alpha\, f(x)\forall\, x \in Rf(5x)=αf(x)∀x∈R.The value of f(2007)f(2007)f(2007) taking α=5\alpha = 5α=5, is:
If f(x)=logx[ln(x)]f(x) = \log_x [\ln(x)]f(x)=logx[ln(x)], then f′(x)f'(x)f′(x) at x=ex = ex=e is:
For a function F, F(0) = 2, F(1) = 3, F(x + 2) = 2 F(x) - F(x + 1) for x ≥\geq≥ 0, then F(5) is equal to-
If f(x)=coshx+sinhxf(x)=\cosh x+\sinh x f(x)=coshx+sinhx then f(x1+x2+.......+xn)=f(x_{1}+x_{2}+.......+x_{n})=f(x1+x2+.......+xn)=