সম্ভাবনার সাধারণ সমস্যা

If MM and NN are any two events, the probability that the exactly one of them occurs is

হানি নাটস

PP(exactly one of M,NM,N occurs)

=P{(MNC)(MCN)}=P(MNC)+(MCN)=P\left\{ \left( M\cap { N }^{ C } \right) \cup \left( { M }^{ C }\cap N \right) \right\}=P\left( M\cap { N }^{ C } \right) +\left( { M }^{ C }\cap N \right)

=P(M)P(MN)+P(N)P(MN)=P(M)+P(N)2P(MN)=P\left( M \right) -P\left( M\cap N \right) +P\left( N \right) -P\left( M\cap N \right)=P\left( M \right) +P\left( N \right) -2P\left( M\cap N \right)

also,PP(exactly one of them occurs)

={1P(MCNC)}{1P(MCNC)}=\left\{ 1-P\left( { M }^{ C }\cap { N }^{ C } \right) \right\} \left\{ 1-P\left( { M }^{ C }\cup { N }^{ C } \right) \right\}

=P(MCNC)P(MCNC)=P(MC)+P(NC)2P(MCNC)=P\left( { M }^{ C }\cup { N }^{ C } \right) -P\left( { M }^{ C }\cap { N }^{ C } \right)=P\left( { M }^{ C } \right) +P\left( { N }^{ C } \right) -2P\left( { M }^{ C }\cap { N }^{ C } \right)

সম্ভাবনার সাধারণ সমস্যা টপিকের ওপরে পরীক্ষা দাও