সমীকরণ সমাধান

If sin2θ=cos3θ.\sin \:2 \theta= \cos \:3\theta . The number of elements for the set θ\theta in 0;θ2π.0\leq ;\theta \leq 2\pi .

হানি নাটস

Given,
sin2θ=cos3θ sin2\theta = cos3\theta

cos3θ=cos(π22θ)\Rightarrow cos3\theta = cos(\dfrac{\pi}{2} - 2\theta)

Therefore general solution is,

3θ=2nπ±(π22θ) 3\theta = 2n\pi \pm (\dfrac{\pi}{2} - 2\theta), where n is any integer

θ=2nππ2,(4n+1)π10\Rightarrow \theta = 2n\pi - \dfrac{\pi}{2}, (4n + 1)\dfrac{\pi}{10}

thus solution in given interval is,

θ=π10,π2,9π10,13π10,3π2,17π10 \theta = \dfrac{\pi}{10}, \dfrac{\pi}{2}, \dfrac{9\pi}{10}, \dfrac{13\pi}{10}, \dfrac{3\pi}{2}, \dfrac{17\pi}{10}

Hence, option 'C' is correct.

সমীকরণ সমাধান টপিকের ওপরে পরীক্ষা দাও