বিপরীত ফাংশন
If the function f:[2,∞]→[1,∞]f:[2,\infty ]\rightarrow [1,\infty ]f:[2,∞]→[1,∞] is defined by f(x)=3x(x−2)f(x)=3^{x(x-2)}f(x)=3x(x−2) then f−1(x)f^{-1}(x)f−1(x) is-
1+1+log3x1+\sqrt{1+ log_{3^{x}}}1+1+log3x
1−1+log3x1-\sqrt{1+ log_{3^{x}}}1−1+log3x
1+1−log3x1+\sqrt{1- log_{3^{x}}}1+1−log3x
Does not exist
f(x)=3x(x−2)⇒f(x)=3x2−2x⇒f(x)=3x2−2x+1−1⇒f(x)=3(x−1)2⋅3−1 \begin{array}{l}f(x)=3^{x(x-2)} \\ \Rightarrow f(x)=3^{x^{2}-2 x} \\ \Rightarrow f(x)=3^{x^{2}-2 x+1-1} \\ \Rightarrow f(x)=3^{(x-1)^{2}} \cdot 3^{-1}\end{array} f(x)=3x(x−2)⇒f(x)=3x2−2x⇒f(x)=3x2−2x+1−1⇒f(x)=3(x−1)2⋅3−1
⇒f(x)=133(x−1)2\Rightarrow f(x)=\frac{1}{3} 3^{(x-1)^{2}} ⇒f(x)=313(x−1)2
Let, y=f(x)⇒x=f−1(y) \begin{aligned} \text { Let,}~ y & =f(x) \\ \Rightarrow x & =f^{-1}(y)\end{aligned} Let, y⇒x=f(x)=f−1(y)
y=133(x−1)2⇒3y=3(x−1)2⇒log3(3y)=log33(x−1)2⇒log33+log3y=(x−1)2 \begin{aligned} & y=\frac{1}{3} 3^{(x-1)^{2}} \\ \Rightarrow & 3 y={3}^{(x-1)^{2}} \\ \Rightarrow & \log _{3}(3 y)=\log _{3} 3^{(x-1)^{2}} \\ \Rightarrow & \log _{3} 3+\log _{3} y=(x-1)^{2}\end{aligned} ⇒⇒⇒y=313(x−1)23y=3(x−1)2log3(3y)=log33(x−1)2log33+log3y=(x−1)2
⇒1+log3y=(x−1)2⇒(x−1)=1+log3y⇒x=1+1+log3y \begin{array}{l}\Rightarrow 1+\log _{3} y=(x-1)^{2} \\ \Rightarrow(x-1)=\sqrt{1+\log _{3} y} \\ \Rightarrow x=1+\sqrt{1+\log _{3} y}\end{array} ⇒1+log3y=(x−1)2⇒(x−1)=1+log3y⇒x=1+1+log3y
⇒f−1(y)=1+1+log3y⇒f−1(x)=1+1+log3x \begin{array}{l}\Rightarrow f^{-1}(y)=1+\sqrt{1+\log _{3} y} \\ \Rightarrow f^{-1}(x)=1+\sqrt{1+\log _{3} x}\end{array} ⇒f−1(y)=1+1+log3y⇒f−1(x)=1+1+log3x
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
দৃশ্যকল্প-১: g(x)=x+25x−1(x≠15)g(x)=\frac{x+2}{5 x-1}\left(x \neq \frac{1}{5}\right)g(x)=5x−1x+2(x=51)
দৃশ্যকল্প-২: ∫x=−x2−6x+16\int x=\sqrt{-x^2-6 x+16}∫x=−x2−6x+16
X and Y are two sets and f:X→Yf:X\rightarrow Yf:X→Y. If f(c)={y;c⊂X,y⊂Y}f(c)=\left\{ y;c\subset X,y\subset Y \right\} f(c)={y;c⊂X,y⊂Y} and f1(d)={x;d⊂Y,x⊂X}{ f }^{ 1 }(d)=\left\{ x;d\subset Y,x\subset X \right\} f1(d)={x;d⊂Y,x⊂X}, then the true statement is
If RRR is relation is "greater then or equal" from A={1,2,3,4}A=\left\{1,2,3,4\right\}A={1,2,3,4} to B={4,5,6}B=\left\{4,5,6\right\}B={4,5,6}, then R−1=R^{-1}=R−1=