স্পর্শক ও অভিলম্ব বিষয়ক
If the tangent at any point ; of is also a normal to the curve & ; , then value of m is-
To find the value of , we need to use the fact that the tangent at any point on the curve is also a normal to the same curve.
First, let's find the equation of the curve .
Given , we can rewrite it as . Taking the cube root of both sides, we get .
So, the curve is a set of points lying on the line .
Now, let's find the derivative of :
Since the slope of the tangent line is the derivative of the curve, the slope of the tangent line at any point on the curve is .
Now, let's find the slope of the line joining the origin and the point :
We know that the slope of the tangent line is , and since the tangent at is also a normal to the curve, the slope of the tangent line is perpendicular to the slope of the line joining and the origin.
So, we have:
So, the value of is .
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই