ত্রিভুজের ক্ষেত্রফল

If two vertices of an equilateral triangle are (0,0)(0,0) and (3,3)(3, \sqrt { 3 }), find the third vertex of the triangle

হানি নাটস

Let (x,y) be the third vertex of the triangle.
Distance between (0,0) and(3,3) (3,\sqrt3) is
d=32+32=12=23d=\sqrt{3^2+\sqrt3^2}=\sqrt{12}=2\sqrt3
Since the triangle is equilateral, therefore all the sides are equal.
(x0)2+(y0)2=12\Rightarrow (x-0)^2+(y-0)^2=12
x2+y2=12\Rightarrow x^2+y^2=12 ...(i)
Again, (x3)2+(y3)2=12(x-3)^2+(y-\sqrt3)^2=12
x26x+9+y223y+3=12\Rightarrow x^2-6x+9+y^2-2\sqrt3y+3=12
(x2+y2)6x23y=0\Rightarrow (x^2+y^2)-6x-2\sqrt3y=0
(12)6x23y=0\Rightarrow (12)-6x-2\sqrt3y=0 (from (i))
3x+3y=6\Rightarrow 3x+\sqrt3y=6
x=63y3\Rightarrow x=\cfrac{6-\sqrt3y}{3}
on putting this value in (i), we get
(63y3)2+y2=12(\cfrac{6-\sqrt3y}{3})^2+y^2=12 ...(ii)
(36+3y2123y9)+y2=12\Rightarrow (\cfrac{36+3y^2-12\sqrt3y}{9})+y^2=12
12y2123y=72\Rightarrow 12y^2-12\sqrt3y=72
y23y6=0\Rightarrow y^2-\sqrt3y-6=0
y223y+3y6=0\Rightarrow y^2-2\sqrt3y+\sqrt3y-6=0
y(y23)+3(y23)=0\Rightarrow y(y-2\sqrt3)+\sqrt3(y-2\sqrt3)=0
y=23,3\Rightarrow y=2\sqrt3,-\sqrt3
form (ii)
when, y=3;x=3y=-\sqrt3;x=3
y=23;x=0y=2\sqrt3;x=0
Therefore, points are (0,23)(0,2\sqrt3) or (3,3)(3,-\sqrt3)

ত্রিভুজের ক্ষেত্রফল টপিকের ওপরে পরীক্ষা দাও