বিপরীত ফাংশন ও পরামিতিক ফাংশনের অন্তরজ
If y=tan−1(a+x1−ax)y=\tan^{-1}\left(\dfrac{\sqrt{a+\sqrt{x}}}{1-\sqrt{ax}}\right)y=tan−1(1−axa+x) then dydx=?\dfrac{dy}{dx}=?dxdy=?
1(1+x)\dfrac{1}{(1+x)}(1+x)1
1x(1+x)\dfrac{1}{\sqrt{x}(1+x)}x(1+x)1
2x(1+x)\dfrac{2}{\sqrt{x}(1+x)}x(1+x)2
12x(1+x)\dfrac{1}{2\sqrt{x}(1+x)}2x(1+x)1
y=tan−1(a+x1−ax)y=tan−1(a)+tan−1(x)dydx=0+ddx(tan−1x)=12x(1+x) \begin{array}{l} y=\tan ^{-1}\left(\frac{\sqrt{a}+\sqrt{x}}{1-\sqrt{a x}}\right) \\ y=\tan ^{-1}(\sqrt{a})+\tan ^{-1}(\sqrt{x}) \\ \frac{d y}{d x}=0+\frac{d}{d x}\left(\tan ^{-1} \sqrt{x}\right) \\ =\frac{1}{2 \sqrt{x}(1+x)} \end{array} y=tan−1(1−axa+x)y=tan−1(a)+tan−1(x)dxdy=0+dxd(tan−1x)=2x(1+x)1
Diff both sides with respect to x,
dydx=d{tan−1(a)}d(a)×d(a)dx+d{tan−1(x)}d(x)×d(x)dxdydx=0+12x(1+x)dydx=12x(1+x) \begin{array}{l} \frac{d y}{d x}=\frac{d\left\{\tan ^{-1}(\sqrt{a})\right\}}{d(\sqrt{a})} \times \frac{d(\sqrt{a})}{d x}+ \\ \frac{d\left\{\tan ^{-1}(\sqrt{x})\right\}}{d(\sqrt{x})} \times \frac{d(\sqrt{x})}{d x} \\ \frac{d y}{d x}=0+\frac{1}{2 \sqrt{x}(1+x)} \\ \frac{d y}{d x}=\frac{1}{2 \sqrt{x}(1+x)} \end{array} dxdy=d(a)d{tan−1(a)}×dxd(a)+d(x)d{tan−1(x)}×dxd(x)dxdy=0+2x(1+x)1dxdy=2x(1+x)1
x=a(θ-sinθ), y=a(1-cosθ) হলে -
নিচের কোনটি সঠিক?
y=sin−1[4x1+4x] y = \sin^{- 1}{\left [ \frac{4 \sqrt{x}}{1 + 4 x} \right ]} y=sin−1[1+4x4x] হলে, (dydx)((4,2) \left ( \frac{dy}{dx} \right )_{\left ( \left ( 4 , 2 \right ) \right.} (dxdy)((4,2) এর মান কত?
x=a(1−sinθ),y=a(1+cosθ) x=a(1-\sin \theta), y=a(1+\cos \theta) x=a(1−sinθ),y=a(1+cosθ) এবং dydx=3 \frac{d y}{d x}=\sqrt{3} dxdy=3 হলে, θ= \theta= θ= কত?
logxx \frac{\log x}{x} xlogx এর অন্তরক সহগ কত ?