গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule
If y=x−12+log5x+sinxcosx+2xy=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^xy=x−21+log5x+cosxsinx+2x, then find dydx\dfrac {dy}{dx}dxdy
−12x−3/2+1xloge5+sec2x+2xlog2-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2−21x−3/2+xloge51+sec2x+2xlog2
12x−3/2+1xloge5+sec2x+2xlog2\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 221x−3/2+xloge51+sec2x+2xlog2
−32x−3/2+1xloge5+sec2x+2xlog2-\displaystyle \frac {3}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2−23x−3/2+xloge51+sec2x+2xlog2
−12x−3/2+1xloge5+cos2x+2xlog2-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\cos^2x+2^x\log 2−21x−3/2+xloge51+cos2x+2xlog2
If the angle between the curves y=2x y = 2^x y=2x and y=3x y=3^x y=3x is α, \alpha, α, then the value of tanα \tan \alpha tanα is equal to :
ddx(e2x−3)= \frac{d}{d x}\left(e^{\sqrt{2 x}-3}\right)= dxd(e2x−3)= কত?
If x=acos3θx = a \cos^3 \thetax=acos3θ and y=asin3θy = a\sin^3 \thetay=asin3θ, then 1+(dydx)21 + \left( \dfrac{dy}{dx} \right )^21+(dxdy)2 is
cosx \cos{\sqrt{x}} cosx এর অন্তরক সহগ কোনটি?