nCr ও সম্পূরক সমাবেশ বিষয়ক
If (1+x)15=C0+C1xC2x2+...+C15x15,(1+x)^{15}=C_{0}+C_{1}xC_{2}x^{2}+...+C_{15}x^{15},(1+x)15=C0+C1xC2x2+...+C15x15, then 15C02−15C12+15C22−15C23+...15C152^{15}C_{0}^{2}- ^{15}C_{1}^{2}+^{15}C_{2}^{2}- ^{15}C_{2}^{3}+... ^{15}C_{15}^{2}15C02−15C12+15C22−15C23+...15C152 is equal to
0
1
-1
none of these
If an=∑r=0n1nCr,{a_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}},} an=r=0∑nnCr1, then an=∑r=0nrnCr,{a_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}},} an=r=0∑nnCrr, equals
If (1+x)n=C0+C1x+C2x2+...+Cnxn(1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+...+C_{n}x^{n}(1+x)n=C0+C1x+C2x2+...+Cnxn, then the value of C02+C122+C222+.........+Cn2n+1C_{0}^{2}+\dfrac{C_{1}^{2}}{2}+\dfrac{C_{2}^{2}}{2}+.........+\dfrac{C_{n}^{2}}{n+1}C02+2C12+2C22+.........+n+1Cn2 is
Verify that: 15C8+15C9−15C6−15C7=0^{15}C_{8}+^{15}C_{9}-^{15}C_{6}-^{15}C_{7} = 0 15C8+15C9−15C6−15C7=0
The total no. of six digit numbers x1x2x3x4x5x6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 }{ x }_{ 4 }{ x }_{ 5 }{ x }_{ 6 }x1x2x3x4x5x6 having the property x1<x2≤x3<x4<x5≤x6{ x }_{ 1 }<{ x }_{ 2 }\le { x }_{ 3 }<{ x }_{ 4 }<{ x }_{ 5 }\le { x }_{ 6 }x1<x2≤x3<x4<x5≤x6, is equal to