ফাংশনের মান নির্ণয়
If ϕ(x)= ϕ′(x) and ϕ (1)=2, then ϕ(3) equals If\;\phi \left( x \right) = \;\phi '\left( x \right)\;and\;\;\phi \;\left( 1 \right) = 2,\;then\;\;\phi \left( 3 \right)\;equals\;Ifϕ(x)=ϕ′(x)andϕ(1)=2,thenϕ(3)equals
e2{e^2}e2
2e22{e^2}2e2
3e23{e^2}3e2
ϕ(x)=ϕ(x) \phi(x)=\phi(x) ϕ(x)=ϕ(x) and ϕ(1)=2 \phi(1)=2 ϕ(1)=2
Let, y=ϕ(x) y=\phi(x) y=ϕ(x)
y=dydx⇒∫dx=∫dyy∴x=lny. \begin{array}{c} y=\frac{d y}{d x} \\ \Rightarrow \quad \int d x=\int \frac{d y}{y} \\ \therefore \quad x=\ln y . \end{array} y=dxdy⇒∫dx=∫ydy∴x=lny.
Given,
ϕ(1)=2⇒2=e1+2∴ln2=1+c⇒c=ln2−1c=ln2−lne[∵lnee=1]c=ln2/ey=ex+ln(2/e)ϕ(3)=?y=e3+ln(2/e)=e3⋅eln(2/e)=e3×2e[∵alogab=b]=ϕ(3)=2e2 \begin{array}{rl} \phi(1) & =2 \\ \Rightarrow 2 & =e^{1+2} \\ \therefore & \ln ^{2}=1+c \\ \Rightarrow c & =\ln ^{2}-1 \\ c & =\ln 2-\ln e[\because \ln e ^{e}=1] \\ c & =\ln 2 / e \\ y & =e^{x+\ln (2 / e)} \\ \phi(3) & =? y=e^{3+\ln (2 / e)}=e^{3} \cdot e^{\ln (2 / e)} \\ & =e^{3} \times \frac{2}{e} \quad\left[\because a^{\log a b}=b\right] \\ & = \phi(3) \\ & =2 e^{2} \end{array} ϕ(1)⇒2∴⇒cccyϕ(3)=2=e1+2ln2=1+c=ln2−1=ln2−lne[∵lnee=1]=ln2/e=ex+ln(2/e)=?y=e3+ln(2/e)=e3⋅eln(2/e)=e3×e2[∵alogab=b]=ϕ(3)=2e2
If f(x)=coshx+sinhxf(x)=\cosh x+\sinh x f(x)=coshx+sinhx then f(x1+x2+.......+xn)=f(x_{1}+x_{2}+.......+x_{n})=f(x1+x2+.......+xn)=
Let f(x)=∣x−x1∣+∣x−x2∣f(x)=\left | x-x_{1} \right |+\left | x-x_{2} \right |f(x)=∣x−x1∣+∣x−x2∣ where x1andx2x_{1} and x_{2}x1andx2 are distinct real numbers. Then the number of points at which f(x) is minimum is:
If f(x+12)+f(x−12)=f(x)f(x + \frac 1 2) + f(x - \frac 1 2) = f(x)f(x+21)+f(x−21)=f(x),∀ x ϵ R\forall\ x\ \epsilon\ R∀ x ϵ R, then f(x−3)+f(x+3)f(x-3) + f(x + 3)f(x−3)+f(x+3) is equal to
If x=(7+43)2n=[x]+fx = (7 + 4\sqrt {3})^{2n} = [x] + fx=(7+43)2n=[x]+f, where nϵNn \epsilon NnϵN and 0≤f<10\leq f < 10≤f<1, then x(1−f)x(1 - f)x(1−f) is equal to