তড়িতশক্তি ও ক্ষমতা

In the above question, Find individual power consumed.

Given R1=1 kΩR_1=1 \ k \Omega and R2=0.5 kΩR_2=0.5\ k\Omega

হানি নাটস

The equivalent resistance in the given circuit is

Req=R1+R2R_{eq}=R_1+R_2 (\because series combination)

Req=1+0.5=1.5kΩ=1500Ω\Rightarrow R_{eq}=1+0.5=1.5 k\Omega=1500 \Omega

Now, the current through the R1R_1 and R2R_2 will be same as that in the equivalent resistance Req.R_{eq}.

The voltage across it is V=220 VV=220 \ V

Applying Ohm's law for ReqR_{eq},

V=IReqV=IR_{eq}

220=I×1500\Rightarrow 220= I \times 1500

I=2201500=0.146 A\Rightarrow I = \dfrac{220}{1500}=0.146 \ A

Now we apply Ohm's law individually on R1R_1 and R2R_2 to find V1V_1 and V2V_2 respectively,

V1=IR1=0.14666×1000=146.66 VV_1=IR_1 =0.14666 \times 1000=146.66 \ V

V2=IR2=0.14666×500=73.33 VV_2=IR_2 =0.14666 \times 500=73.33 \ V

Now we can calculate the individual power by either of the formula

P=V2RP=\dfrac{V^2}{R} or P=I2RP=I^2R

Let's use the first relation.

  • Power consumed by resistance R1R_1 :

P1=(V1)2R1=(146.66)21000=21.509 W{P}_{1}=\dfrac{(V_1)^2}{R_1}= \dfrac{(146.66)^2}{1000}=21.509 \ W

  • Power consumed by resistance R2R_2 :

P2=(V2)2R2=(73.33)2500=10.755 W{P}_{2}=\dfrac{(V_2)^2}{R_2}= \dfrac{(73.33)^2}{500}=10.755 \ W

তড়িতশক্তি ও ক্ষমতা টপিকের ওপরে পরীক্ষা দাও