সাধারণ পদ , মধ্যপদ ও সমদূরবর্তী পদ নির্ণয়
In the expansion of (1+x)43(1 + x)^{43}(1+x)43, the coefficients of the (2r+1)th and the (r + 2)th terms are equal, then the value of r, is
14
15
16
17
Tn+1=nCn⋅an−n⋅bnTn+1=43CnxnT2n+1=43C2n⋅x2nTn+2=T(n+1)+1⋅xn+1=43Cn+1 \begin{aligned} T_{n+1} & ={ }^{n} C_{n} \cdot a^{n-n} \cdot b^{n} \\ T_{n+1} & ={ }^{43} C_{n} x^{n} \\ T_{2 n+1} & =43 C_{2 n} \cdot x^{2 n} \\ T_{n+2} & =T_{(n+1)+1} \cdot x^{n+1} \\ & =43 C_{n+1} \end{aligned} Tn+1Tn+1T2n+1Tn+2=nCn⋅an−n⋅bn=43Cnxn=43C2n⋅x2n=T(n+1)+1⋅xn+1=43Cn+1
Coefficients are equal
43c2r=43cn+1 43 c_{2 r}={ }^{43} c_{n+1} 43c2r=43cn+1
2r=r+1 or 2n+r+1=43r=1 or 3r=42r=14 \begin{aligned} 2 r= & r+1 \quad \text { or } \\ 2 n+r+1 & =43 \\ r & =1 \text { or } \begin{aligned} 3 r & =42 \\ r & =14 \end{aligned} \end{aligned} 2r=2n+r+1rr+1 or =43=1 or 3rr=42=14
[ncx=ncy, then x=y or x+y=n] \left[\begin{array}{c} n c_{x}={ }^{n} c_{y} \text {, then } x=y \text { or } \\ x+y=n \end{array}\right] [ncx=ncy, then x=y or x+y=n]
Option (A) is correct
The total number of rational terms in the expansion of (713+1119)6561\left(7^{\frac 13} + 11^{\frac 19}\right)^{6561}(731+1191)6561 is
The coefficient of middle term in the expansion of (1+x)40(1+{x})^{40}(1+x)40 is
The number of irrational terms in the expansion of(58+26)100,( \sqrt [ 8 ] { 5 } + \sqrt [ 6 ] { 2 } ) ^ { 100 } ,(85+62)100, is
In the expansion of (a−b)n,n≥5(a-b)^{n},n\ge 5(a−b)n,n≥5, if the sum of the 5th5^{th}5th and 6th6^{th}6th terms is zero, then a/ba/ba/b=