সাধারণ পদ , মধ্যপদ ও সমদূরবর্তী পদ নির্ণয়
In the expansion of ;[2log29x−1+7+1215log2(3x−1+1)]7\left[2^{\log_2 {\sqrt{9^{x-1}+7}}}+\displaystyle \frac{1}{2^{\frac{1}{5}\log_2 \displaystyle {(3^{x-1}+1})}}\right]^{7}[2log29x−1+7+251log2(3x−1+1)1]7,& ;6th term is 848484. Then x=x =x=
111
222
111 or 222
222 or 444
The given expression =[9x−1+7+1(3x−1+1)15]7\displaystyle ={ \left[ \sqrt { { 9 }^{ x-1 }+7 } +\frac { 1 }{ { \left( { 3 }^{ x-1 }+1 \right) }^{ \frac { 1 }{ 5 } } } \right] }^{ 7 }=[9x−1+7+(3x−1+1)511]7
Given, T6=84{ T }_{ 6 }=84T6=84
⇒7C5(9x−1+7)7−5(1(3x−1+1)15)5=84\Rightarrow\displaystyle {}^{ 7 }{ { C }_{ 5 } }{ \left( \sqrt { { 9 }^{ x-1 }+7 } \right) }^{ 7-5 }{ \left( \frac { 1 }{ { \left( { 3 }^{ x-1 }+1 \right) }^{ \frac { 1 }{ 5 } } } \right) }^{ 5 }=84⇒7C5(9x−1+7)7−5((3x−1+1)511)5=84
⇒7C5(9x−1+7).1(3x−1+1)=84\displaystyle\Rightarrow {}^{ 7 }{ { C }_{ 5 } }\left( { 9 }^{ x-1 }+7 \right) .\frac { 1 }{ \left( { 3 }^{ x-1 }+1 \right) } =84⇒7C5(9x−1+7).(3x−1+1)1=84
⇒32x−12.3x+27=0\Rightarrow { 3 }^{ 2x }-12.{ 3 }^{ x }+27=0⇒32x−12.3x+27=0⇒(3x−3)(3x−9)=0\Rightarrow \left( { 3 }^{ x }-3 \right) \left( { 3 }^{ x }-9 \right) =0⇒(3x−3)(3x−9)=0
⇒3x=3,9\Rightarrow { 3 }^{ x }=3,9⇒3x=3,9
The total number of rational terms in the expansion of (713+1119)6561\left(7^{\frac 13} + 11^{\frac 19}\right)^{6561}(731+1191)6561 is
The coefficient of middle term in the expansion of (1+x)40(1+{x})^{40}(1+x)40 is
The number of irrational terms in the expansion of(58+26)100,( \sqrt [ 8 ] { 5 } + \sqrt [ 6 ] { 2 } ) ^ { 100 } ,(85+62)100, is
In the expansion of (a−b)n,n≥5(a-b)^{n},n\ge 5(a−b)n,n≥5, if the sum of the 5th5^{th}5th and 6th6^{th}6th terms is zero, then a/ba/ba/b=