ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ

x+sin1+cosxdx=\int \dfrac {x+\sin }{1+\cos x}dx=

হানি নাটস

x+sinx(1+cosx)dx=x+2sin(x/2)cos(x/2)1+2cos2(x/2)1dx\displaystyle \int \dfrac {x+\sin x}{(1+\cos x)}dx=\displaystyle \int \dfrac {x+2 \sin (x/2)\cos (x/2)}{1+2\cos^2 (x/2)-1}dx
x+2sin(x2)cosx22cos2x/2dx=xdx2cos2(x/2)+tanx2dx\displaystyle \int \dfrac {x+2\sin \left (\dfrac {x}{2}\right) \cos \dfrac {x}{2}}{2\cos^2x/2}dx =\displaystyle \int \dfrac {xdx}{2\cos^2 (x/2)}+\displaystyle \int tan \dfrac {x}{2}dx
12xsec2(x2)dx+tan(x2)dx\dfrac { 1 }{ 2 } \int { x } \sec ^{ 2 }{ \left( \dfrac { x }{ 2 } \right) dx } +\int { \tan { \left( \dfrac { x }{ 2 } \right) } dx }
integrate first integral by parts
U=xU=x
du=dxdu=dx
du=12sec2x/2dxdu=\dfrac {1}{2}\sec^2 x/2 dx
u=tanx/2u=\tan x/2
12xsec2(x2)dx+tanx2dx=xtanx2tanx2dx+tanx2dx\dfrac {1}{2} \displaystyle \int x\sec^2 \left (\dfrac {x}{2}\right)dx +\displaystyle \int \tan \dfrac {x}{2}dx =x \tan \dfrac {x}{2}-\displaystyle \int \tan \dfrac {x}{2}dx +\displaystyle \int \tan \dfrac {x}{2}dx
=xtan(x/2)+c=x\tan (x/2)+c

ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ টপিকের ওপরে পরীক্ষা দাও