intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ)
∫1x2(x−1)dx=? \int \frac{1}{x^{2}(x-1)} d x \quad = ?∫x2(x−1)1dx=?
−ln∣x−1x∣+1x+c-\ln \left|\frac{x-1}{x}\right|+\frac{1}{x}+c−lnxx−1+x1+c
ln∣x−1x∣+1x+c\ln \left|\frac{x-1}{x}\right|+\frac{1}{x}+clnxx−1+x1+c
ln∣x−1x∣−1x+c\ln \left|\frac{x-1}{x}\right|-\frac{1}{x}+clnxx−1−x1+c
−ln∣x−1x∣−1x+c-\ln \left|\frac{x-1}{x}\right|-\frac{1}{x}+c−lnxx−1−x1+c
Solve: ধরি, 1x2(x−1)≡Ax+Bx2+Cx−1 \frac{1}{x^{2}(x-1)} \equiv \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} x2(x−1)1≡xA+x2B+x−1C⇒1=Ax(x−1)+B(x−1)+Cx2⋯(1) \Rightarrow 1=A x(x-1)+B(x-1)+C x^{2} \cdots(1) ⇒1=Ax(x−1)+B(x−1)+Cx2⋯(1)
(1) এ x=0 x=0 x=0 বসিয়ে পাই, 1=−B⇒B=−1 1=-B \Rightarrow B=-1 1=−B⇒B=−1
(1) এx=1 এ x=1 এx=1 বসিয়ে পাই, 1= C⇒C=1 \mathrm{C} \Rightarrow \mathrm{C}=1 C⇒C=1
(1) এর উভয়পক্ষ থেকে x2 x^{2} x2 এর সহগ সমীকৃত করে পাই, 0=A+C⇒A=−C=−1 0=\mathrm{A}+\mathrm{C} \Rightarrow \mathrm{A}=-\mathrm{C}=-1 0=A+C⇒A=−C=−1
∴∫1x2(x−1)dx=∫{−1x˙−1x2+1x−1}dz=−ln∣x∣−(−1x)+ln∣x−1∣+c=ln∣x−1x∣+1x+c \begin{array}{l} \therefore \quad \int \frac{1}{x^{2}(x-1)} d x=\int\left\{-\frac{1}{\dot{x}}-\frac{1}{x^{2}}+\frac{1}{x-1}\right\} d z \\ =-\ln |x|-\left(-\frac{1}{x}\right)+\ln |x-1|+c \\ =\ln \left|\frac{x-1}{x}\right|+\frac{1}{x}+c \end{array} ∴∫x2(x−1)1dx=∫{−x˙1−x21+x−11}dz=−ln∣x∣−(−x1)+ln∣x−1∣+c=lnxx−1+x1+c
P=(x−4)2(x−3) P=(x-4)^{2}(x-3) P=(x−4)2(x−3) এবং g(x,y)=x2+y2 g(x, y)=x^{2}+y^{2} g(x,y)=x2+y2
দৃশ্যকল্প: g(x)=cot−1x,f(x)=x g(x)=\cot ^{-1}x, f(x)=x g(x)=cot−1x,f(x)=x
P=(x−4)2(x−3) P=(x-4)^{2}(x-3) P=(x−4)2(x−3)
f(x)=x2 f(x)=x^{2} f(x)=x2 এবং x2a2+y2b2=1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1
∫dxx2−x+1 ∫ \frac{dx}{x^{2} - x + 1} ∫x2−x+1dx এর মান নির্ণয় কর-