intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ)

dxx+1+x1=? \int \frac{d x}{\sqrt{x+1}+\sqrt{x-1}}= ?

Solve:

=x+1x1(x+1+x1)(x+1x1)dx=x+1x1(x+1)(x1)dx=12[(x+1)1/2(x+1)1/2]dx=12[(x+1)12+112+1(x1)12+112+1]+c=12[(x+1)3232(x1)3232]+c=13[(x+1)32(x1)32]+c (Ans:)  \begin{array}{l} =\int \frac{\sqrt{x+1}-\sqrt{x-1}}{(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}-\sqrt{x-1})} d x \\ =\int \frac{\sqrt{x+1}-\sqrt{x-1}}{(x+1)-(x-1)} d x \\ =\frac{1}{2} \int\left[(x+1)^{1 / 2}-(x+1)^{1 / 2}\right] d x \\ =\frac{1}{2}\left[\frac{(x+1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{(x-1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]+c \\ =\frac{1}{2}\left[\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x-1)^{\frac{3}{2}}}{\frac{3}{2}}\right]+c \\ =\frac{1}{3}\left[(x+1)^{\frac{3}{2}}-(x-1)^{\frac{3}{2}}\right]+c \text { (Ans:) } \end{array}

intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ) টপিকের ওপরে পরীক্ষা দাও