∫x2−x+1x2+x+1dx
ধরি, x2+x+1=A(x2−x+1)+B(2x−1)+C উভয় পক্ষ থেকে x2,x B x0 এর সহগ সমীকৃত করে পাই,
A=1;−A+2B=1;A−B+C=1∴B=1⇒1−1+C=1∴C=1∴∫x2−x+1x2+x+1dx=∫x2−x+1(x2−x+1)+(2x−1)+1dx=∫(1+x2−x+12x−1+x2−x+11)dx
=x+ln(x2−x+1)+∫(x−21)2+(23)2dx=x+ln(x2−x+1)+32tan−1(32x−1)+C