ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ
∫sinx°dx=কত?\int_{ }^{ }\sin x\degree dx=কত?∫sinx°dx=কত?
−cosx°+c−\cos x°+c−cosx°+c
cosx°+c\cos x°+ccosx°+c
−180°πcosπx180+c-\frac{180\degree}{\pi}\cos\frac{\pi x}{180}+c−π180°cos180πx+c
180°πcosπx180+c\frac{180\degree}{\pi}\cos\frac{\pi x}{180}+cπ180°cos180πx+c
∫sinx∘dx=∫sinπx180dx=−cosπx180π180+C=−180∘πcosπx180+C \begin{aligned} & \int \sin x^{\circ} d x \\ = & \int \sin \frac{\pi x}{180} d x \\ = & -\frac{\cos \frac{\pi x}{180}}{\frac{\pi}{180}}+C \\ = & -\frac{180^{\circ}}{\pi} \cos \frac{\pi x}{180}+C\end{aligned} ===∫sinx∘dx∫sin180πxdx−180πcos180πx+C−π180∘cos180πx+C
∫sin3xcos5xdx=? \int \sin 3 x \cos 5 x d x = ?∫sin3xcos5xdx=?
যোগজীকরণ নির্ণয় কর:
∫dxcosx+sinx \int \frac{dx}{\cos{x} + \sin{x}} ∫cosx+sinxdx
f(x)=x………(i) f(x)=x \ldots \ldots \ldots(i) f(x)=x………(i)
g(x)=cos−1x2………(ii) g(x)=\cos ^{-1} x^2 \ldots \ldots \ldots(i i) g(x)=cos−1x2………(ii)
y2=7x………(iii) y^2=7 x \ldots \ldots \ldots(i i i) y2=7x………(iii)
∫dx1+cosx=f(x)+c \int \frac{dx}{1 + \cos{x}} = f{\left ( x \right )} + c ∫1+cosxdx=f(x)+c হলে, f(x)=?