বিভিন্ন সূত্রের ব্যবহারে যোগজীকরণ
∫sin(5−x10)dx=f(x)+c \int \sin{\left ( 5 - \frac{x}{10} \right )} dx = f{\left ( x \right )} + c ∫sin(5−10x)dx=f(x)+c হলে, f(x)এর মান কত?
−10cos(5−x10) - 10 \cos{\left ( 5 - \frac{x}{10} \right )} −10cos(5−10x)
10cos(5−x10) 10 \cos{\left ( 5 - \frac{x}{10} \right )} 10cos(5−10x)
−110cos(5−x10) - \frac{1}{10} \cos{\left ( 5 - \frac{x}{10} \right )} −101cos(5−10x)
110cos(5−x10) \frac{1}{10} \cos{\left ( 5 - \frac{x}{10} \right )} 101cos(5−10x)
∫sin(5−x10)dx=f(x)+c∫sin(5−x10)dx=−cos(5−x10)/(0−110)=10cos(5−x10) \begin{array}{l}\text { } \int \sin \left(5-\frac{x}{10}\right) d x=f(x)+c \\ \int \sin \left(5-\frac{x}{10}\right) d x=-\cos \left(5-\frac{x}{10}\right) /\left(0-\frac{1}{10}\right) \\ =10 \cos \left(5-\frac{x}{10}\right) \text { }\end{array} ∫sin(5−10x)dx=f(x)+c∫sin(5−10x)dx=−cos(5−10x)/(0−101)=10cos(5−10x)
∫dxx3 \int \frac{dx}{\sqrt[3]{x}} ∫3xdx সমান -
f(x) = cot x, g(x)= cosec²x
∫f(x)dx \int f{\left ( x \right )} dx ∫f(x)dx = কত ?
∫cos2x°dx= \int \cos{2} x ° dx = ∫cos2x°dx= কত?
∫dxxx2−1=f(x)+c \int \frac{dx}{x \sqrt{x^{2} - 1}} = f{\left ( x \right )} + c ∫xx2−1dx=f(x)+c
হলে, f(x)=?