UV আকারের (Integration by parts)

x2sinxdx=?\int x^{2} \sin x d x = ?

Solve:

x2sinxdx=x2sinxdx{ddx(x2)sinxdx}dx=x2(cosx)2x(cosx)dx=x2cosx+2[xcosx{ddx(x)cosxdx}}dx]=x2cosx+2[xsinx1sinxdx]=x2cosx+2[xsinx(cosx)]+c=x2cosx+2xsinx+2cosx+c \begin{array}{l} \int x^{2} \sin x d x \\ =x^{2} \int \sin x d x-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int \sin x d x\right\} d x \\ =x^{2}(-\cos x)-\int 2 x(-\cos x) d x \\ =-x^{2} \cos x+2\left[x \int \cos x-\right. \\ \left.\left.\int-\left\{\frac{d}{d x}(x) \int \cos x d x\right\}\right\} d x\right] \\ =-x^{2} \cos x+2\left[x \sin x-\int 1 \cdot \sin x d x\right] \\ =-x^{2} \cos x+2[x \sin x-(-\cos x)]+c \\ =-x^{2} \cos x+2 x \sin x+2 \cos x+c \end{array}

UV আকারের (Integration by parts) টপিকের ওপরে পরীক্ষা দাও