নির্দিষ্ট যোগজ

  01dx2xx2=? \int_{0}^{1} \frac{dx}{\sqrt{2 x - x^{2}}} = ?  

[RU:12-13, 15-16]

01dx2xx2=01dx1(x1)2dx=[sin1(x1)]01=0(π2)=π2 \int_{0}^{1} \frac{\mathbf{d x}}{\sqrt{2 \mathrm{x}-\mathbf{x}^{2}}}=\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1-(\mathrm{x}-1)^{2}}} \mathrm{dx}=\left[\sin ^{-1}(\mathrm{x}-1)\right]_{0}^{1}=0-\left(-\frac{\pi}{2}\right)=\frac{\pi}{2}

নির্দিষ্ট যোগজ টপিকের ওপরে পরীক্ষা দাও