নির্দিষ্ট যোগজ
∫0π4cos2θcos2θ=?\int_0^{\frac{\pi}{4}} \frac{cos 2 \theta}{cos² \theta} = ? ∫04πcos2θcos2θ=?
π2−1\frac{\pi}{2} -12π−1
π4−1\frac{\pi}{4} -14π−1
π3−1\frac{\pi}{3} -13π−1
2−π22 - \frac{\pi}{2}2−2π
∫0π/4cos2θcos2θdθ=∫0π/42cos2θ−1cos2θdθ=∫0π/4(2−sec2θ)dx=[2θ−tanθ]0π=2⋅π4−tanπ4−(2.0−tan0)=π2−1 \begin{array}{l}\text { } \int_{0}^{\pi / 4} \frac{\cos {2} \theta}{\cos ^{2} \theta} d \theta \\ =\int_{0}^{\pi / 4} \frac{2 \cos ^{2} \theta-1}{\cos ^{2} \theta} d \theta \\ =\int_{0}^{\pi / 4}\left(2-\sec ^{2} \theta\right) d x=[2 \theta-\tan \theta]_{0}^{\pi} \\ =2 \cdot \frac{\pi}{4}-\tan \frac{\pi}{4}-(2.0-\tan 0)=\frac{\pi}{2}-1\end{array} ∫0π/4cos2θcos2θdθ=∫0π/4cos2θ2cos2θ−1dθ=∫0π/4(2−sec2θ)dx=[2θ−tanθ]0π=2⋅4π−tan4π−(2.0−tan0)=2π−1
∫0π4cosθcos2θdθ=? \int_{0}^{\frac{\pi}{4}} \frac{\cos \theta}{\cos ^{2} \theta} d \theta=? ∫04πcos2θcosθdθ=?
The value of ∫−π/2199π/2(1+cos2x)dx\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx∫−π/2199π/2(1+cos2x)dx is?
∫0π/2cosxdx= কত? \int_{0}^{\pi / 2} \cos x d x=\text { কত? } ∫0π/2cosxdx= কত?
∫0π6sin2xcosxdx= \int_{0}^{\frac{\pi}{6}} \sin ^{2} x \cos x d x= ∫06πsin2xcosxdx= কত ?