নির্দিষ্ট যোগজ
∫1/21dxx4x2−1\int_{1 / 2}^{1} \frac{d x}{x \sqrt{4 x^{2}-1}}∫1/21x4x2−1dx
54\frac{\sqrt{5}}{4}45
24\frac{\sqrt{2}}{4}42
34\frac{\sqrt{3}}{4}43
32\frac{\sqrt{3}}{2}23
Solve:
∫1/21dxx4x2−1=∫1/212dx2x(2x)2−1=[sec−1(2x)]1/21=sec−12−sec−11=π3−0=π3 \begin{array}{l} \int_{1 / 2}^{1} \frac{d x}{x \sqrt{4 x^{2}-1}} \\ =\int_{1 / 2}^{1} \frac{2 d x}{2 x \sqrt{(2 x)^{2}-1}}=\left[\sec ^{-1}(2 x)\right]_{1 / 2}^{1} \\ =\sec ^{-1} 2-\sec ^{-1} 1=\frac{\pi}{3}-0=\frac{\pi}{3} \end{array} ∫1/21x4x2−1dx=∫1/212x(2x)2−12dx=[sec−1(2x)]1/21=sec−12−sec−11=3π−0=3π
এবং x=2cosθ x=2 \cos \theta x=2cosθ. তাহলে dx=−2sinθdθ d x=-2 \sin \theta d \theta dx=−2sinθdθ
Limit: x=1 x=1 x=1হলে θ=cos−112=π3 \theta=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3} θ=cos−121=3π এবং
x=2 if θ=cos−11=0∴I=∫π/30−2sinθdθ4cos2θ4(1−cos2θ)=∫π/30−2sinθdθ4cos2θ⋅2sinθ=−14∫π/30sec2θdθ \begin{aligned} & x=2 \text { if } \theta=\cos ^{-1} 1=0 \\ \therefore \quad & I=\int_{\pi / 3}^{0} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta \sqrt{4\left(1-\cos ^{2} \theta\right)}} \\ & =\int_{\pi / 3}^{0} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta \cdot 2 \sin \theta}=-\frac{1}{4} \int_{\pi / 3}^{0} \sec ^{2} \theta d \theta \end{aligned} ∴x=2 if θ=cos−11=0I=∫π/304cos2θ4(1−cos2θ)−2sinθdθ=∫π/304cos2θ⋅2sinθ−2sinθdθ=−41∫π/30sec2θdθ
=−14[tanθ]π/30=−14(tan0−tanπ3)=−14(0−3)=34 \begin{array}{l} =-\frac{1}{4}[\tan \theta]_{\pi / 3}^{0}=-\frac{1}{4}\left(\tan 0-\tan \frac{\pi}{3}\right) \\ =-\frac{1}{4}(0-\sqrt{3})=\frac{\sqrt{3}}{4} \end{array} =−41[tanθ]π/30=−41(tan0−tan3π)=−41(0−3)=43
The value of ∫−π/2199π/2(1+cos2x)dx\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx∫−π/2199π/2(1+cos2x)dx is?
∫0π6sin2xcosxdx= \int_{0}^{\frac{\pi}{6}} \sin ^{2} x \cos x d x= ∫06πsin2xcosxdx= কত ?
f(x)= {x+1forx=0 \left \lbrace \begin{matrix} x + 1 & f{\quad\text{or}\quad} & x & = & 0 \end{matrix} \right . {x+1forx=0 হলে-
∫−1−12f(x)dx=18 \int_{- 1}^{- \frac{1}{2}} f{\left ( x \right )} dx = \frac{1}{8} ∫−1−21f(x)dx=81
∫01f(x)dx=0 \int_{0}^{1} f{\left ( x \right )} dx = 0 ∫01f(x)dx=0
f(−1)=1 f{\left ( - 1 \right )} = 1 f(−1)=1
নিচের কোনটি সঠিক?
The value of ;∫0π/4secx(secx+tanx)2dx\displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx∫0π/4(secx+tanx)2secxdx is& ;