নির্দিষ্ট যোগজ

1/21dxx4x21\int_{1 / 2}^{1} \frac{d x}{x \sqrt{4 x^{2}-1}}

কেতাব স্যার লিখিত

Solve:

1/21dxx4x21=1/212dx2x(2x)21=[sec1(2x)]1/21=sec12sec11=π30=π3 \begin{array}{l} \int_{1 / 2}^{1} \frac{d x}{x \sqrt{4 x^{2}-1}} \\ =\int_{1 / 2}^{1} \frac{2 d x}{2 x \sqrt{(2 x)^{2}-1}}=\left[\sec ^{-1}(2 x)\right]_{1 / 2}^{1} \\ =\sec ^{-1} 2-\sec ^{-1} 1=\frac{\pi}{3}-0=\frac{\pi}{3} \end{array}

এবং x=2cosθ x=2 \cos \theta . তাহলে dx=2sinθdθ d x=-2 \sin \theta d \theta

Limit: x=1 x=1 হলে θ=cos112=π3 \theta=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3} এবং

x=2 if θ=cos11=0I=π/302sinθdθ4cos2θ4(1cos2θ)=π/302sinθdθ4cos2θ2sinθ=14π/30sec2θdθ \begin{aligned} & x=2 \text { if } \theta=\cos ^{-1} 1=0 \\ \therefore \quad & I=\int_{\pi / 3}^{0} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta \sqrt{4\left(1-\cos ^{2} \theta\right)}} \\ & =\int_{\pi / 3}^{0} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta \cdot 2 \sin \theta}=-\frac{1}{4} \int_{\pi / 3}^{0} \sec ^{2} \theta d \theta \end{aligned}

=14[tanθ]π/30=14(tan0tanπ3)=14(03)=34 \begin{array}{l} =-\frac{1}{4}[\tan \theta]_{\pi / 3}^{0}=-\frac{1}{4}\left(\tan 0-\tan \frac{\pi}{3}\right) \\ =-\frac{1}{4}(0-\sqrt{3})=\frac{\sqrt{3}}{4} \end{array}

নির্দিষ্ট যোগজ টপিকের ওপরে পরীক্ষা দাও