intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ)

1x+x+1dx\int\dfrac{1}{\sqrt{x}+\sqrt{x+1}}dx is equal to

হানি নাটস

I=1x+x+1dxI=1x+x+1×xx+1xx+1dxI=xx+1xx1dxI=1[xdxI=x+1dx]I=[x3/232(x+1)3/232]+cI=23[(x+1)3/2x3/2]+c\begin{array}{l} I=\int { \dfrac { 1 }{ { \sqrt { x } +\sqrt { x+1 } } } dx } \\I= \int { \dfrac { 1 }{ { \sqrt { x } +\sqrt { x+1 } } } \times \dfrac { { \sqrt { x } -\sqrt { x+1 } } }{ { \sqrt { x } -\sqrt { x+1 } } } dx } \\I= \int { \dfrac { { \sqrt { x } -\sqrt { x+1 } } }{ { x-x-1 } } dx } \\ I=-1\left[ { \int { \sqrt { x } dx } I=-\int { \sqrt { x+1 } dx } } \right] \\ I=-\left[ { \dfrac { { { x^{ 3/2 } } } }{ { \dfrac { 3 }{ 2 } } } -\dfrac { { { { \left( { x+1 } \right) }^{ 3/2 } } } }{ { \dfrac { 3 }{ 2 } } } } \right] +c \\ I=\dfrac { 2 }{ 3 } \left[ { { { \left( { x+1 } \right) }^{ 3/2 } }-{ x^{ 3/2 } } } \right] +c \end{array}

intigration of Rational Algebraic Fractions (মূলদ ভগ্নাংশ) টপিকের ওপরে পরীক্ষা দাও