প্রতিস্থাপন পদ্ধতি (Method of Substitution)

dx(x4)(5x)=?\int{\frac{dx}{\sqrt{\left(x-4\right)\left(5-x\right)}}=?}

 ধরি, x4=z2dx=2zdzx4=z2x+4+1=z2+1x+5=1z2 \begin{array}{l}\text { ধরি, } x-4=z^{2} \\ \quad \Rightarrow d x=2 z d z \\ \therefore x-4=z^{2} \\ \Rightarrow-x+4+1=-z^{2}+1 \\ \Rightarrow-x+5=1-z^{2}\end{array}

dx(x4)(5x)=2zdzz2(1z2)=2zdzz1z2=dz1z2 \begin{aligned} & \int \frac{d x}{\sqrt{(x-4)(5-x)}} \\ = & \int \frac{2 z d z}{\sqrt{z^{2}\left(1-z^{2}\right)}} \\ = & \int \frac{2 z d z}{z \cdot \sqrt{1-z^{2}}} \\ = & \int \frac{d z}{\sqrt{1-z^{2}}}\end{aligned}

[dx1x2=sin1x] \left[\because \int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x\right]

=2sin1z+c=2sin1x4+c \begin{array}{l}=2 \sin ^{-1} z+c \\ =2 \sin ^{-1} \sqrt{x-4}+c\end{array}

প্রতিস্থাপন পদ্ধতি (Method of Substitution) টপিকের ওপরে পরীক্ষা দাও