Higher Math

11111+x1111+y=?\left|\begin{matrix}1&1&1\\1&1+x&1\\1&1&1+y\\\end{matrix}\right|=?

Δ=11111+x1111+y \Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1+\mathrm{x} & 1 \\ 1 & 1 & 1+\mathrm{y} \end{array}\right|

R1=R1R2 \mathrm{R}_{1}=\mathrm{R}_{1}-\mathrm{R}_{2}

Δ=0x011+x1111+y \Rightarrow \Delta=\left|\begin{array}{ccc} 0 & -\mathrm{x} & 0 \\ 1 & 1+\mathrm{x} & 1 \\ 1 & 1 & 1+\mathrm{y} \end{array}\right|

Expanding along R1 \mathrm{R}_{1}

Δ=0(x){1+y1}+0Δ=xy \begin{array}{l} \Rightarrow \Delta=0-(-\mathrm{x})\{1+\mathrm{y}-1\}+0 \\ \Rightarrow \Delta=\mathrm{xy} \end{array}

Higher Math টপিকের ওপরে পরীক্ষা দাও