পরাবৃত্ত এর বিভিন্ন উপাদানসমূহ নির্ণয়

Let PQPQ be a variable focal chord of the parabola y2=4ax(a>0){y^2} = 4ax\left( {a > 0} \right) whose vertex is A. then the locus of centroid of ΔAPQ\Delta APQ lies on a parabola whose length of latus rectum is-

Parametric point on ellipse,

P=(at12,2at1)Q=(at22,2at2) \begin{array}{l} P=\left(a t_{1}^{2}, 2 a t_{1}\right) \\ Q=\left(a t_{2}^{2}, 2 a t_{2}\right) \end{array}

As PQ P Q passes through focus,

A1t2=1 A_{1} t_{2}=-1

 Sentroid of PAQ=(at12+at223,2at1+2at23)x=a3(t12+t22)(i)y=2a3(t1+t2)(t1+t2)=3y2a \begin{array}{l}\text { Sentroid of } \triangle P A Q=\left(\frac{a t_{1}^{2}+a t_{2}^{2}}{3}, \frac{2 a t_{1}+2 a t_{2}}{3}\right) \\ x=\frac{a}{3}\left(t_{1}^{2}+t_{2}^{2}\right)…(i) \\ y=\frac{2 a}{3}\left(t_{1}+t_{2}\right) \\ \Rightarrow\left(t_{1}+t_{2}\right)=\frac{3 y}{2 a} \\\end{array}

From (i), x=a3[(t1+t2)22t1t2] x=\frac{a}{3}\left[\left(t_{1}+t_{2}\right)^{2}-2 t_{1} t_{2}\right]

x=a3[(3y2a)22(1)]x=a3(9y24a2+2)3x=9y2+8a24a \begin{array}{l} \Rightarrow x=\frac{a}{3}\left[\left(\frac{3 y}{2 a}\right)^{2}-2(-1)\right] \\ \Rightarrow x=\frac{a}{3}\left(\frac{9 y^{2}}{4 a^{2}}+2\right) \\ \Rightarrow 3 x=\frac{9 y^{2}+8 a^{2}}{4 a} \end{array}

12ax=9y2+8a29y2=4a(3x2a)y2=4a9×3[x2a3]y2=4a3[x2a3] \begin{array}{l}\Rightarrow 12 a x=9 y^{2}+8 a^{2} \\ \Rightarrow 9 y^{2}=4 a(3 x-2 a) \\ \Rightarrow y^{2}=\frac{4 a}{9} \times 3\left[x-\frac{2 a}{3}\right] \\ \Rightarrow y^{2}=\frac{4 a}{3}\left[x-\frac{2 a}{3}\right]\end{array}

\therefore length of lotus rectum = 4a3 \frac{4 a}{3}

পরাবৃত্ত এর বিভিন্ন উপাদানসমূহ নির্ণয় টপিকের ওপরে পরীক্ষা দাও