মান নির্ণয়

Let P={θ:sinθcosθ=2cosθ}P=\{\theta:\sin\theta-\cos\theta=\sqrt{2}\cos\theta\} and Q={θ:sinθ+cosθ=2sinθ}Q=\{\theta:\sin\theta+\cos\theta=\sqrt{2}\sin\theta\} be two sets. Then 

Admission_Weekly_25

P={θ:sinθcosθ=2cosθ}P=\left\{ \theta :\sin { \theta -\cos { \theta } =\sqrt { 2 } \cos { \theta } } \right\}

sinθcosθ=2cosθ\sin { \theta -\cos { \theta } =\sqrt { 2 } \cos { \theta } }

Dividing by cosθ\cos { \theta } , we get

tanθ1=2\tan { \theta } -1=\sqrt { 2 }

tanθ=2+1\tan { \theta } =\sqrt { 2 } + 1

θ=arctan(2+1)\theta =\arctan { (\sqrt { 2 } +1) }

Q={θ:sinθ+cosθ=2sinθ}Q=\left\{ \theta :\sin { \theta +\cos { \theta } =\sqrt { 2 } \sin { \theta } } \right\}

sinθ+cosθ=2sinθ\sin { \theta } +\cos { \theta } =\sqrt { 2 } \sin { \theta }

cosθ=2sinθsinθ\cos { \theta } =\sqrt { 2 } \sin { \theta } -\sin { \theta }

cosθ=(21)sinθ\cos { \theta } =(\sqrt { 2 } -1)\sin { \theta }

tanθ=121\tan { \theta } =\dfrac { 1 }{ \sqrt { 2 } -1 }

On rationalising, we get

tanθ=2+1\tan { \theta } =\sqrt { 2 } +1

θ=arctan(2+1)\theta =\arctan { (\sqrt { 2 } +1) }

Hence, sets P and Q both have same values. So P=QP = Q.

মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও