মান নির্ণয়
Let P={θ:sinθ−cosθ=2cosθ}P=\{\theta:\sin\theta-\cos\theta=\sqrt{2}\cos\theta\}P={θ:sinθ−cosθ=2cosθ} and Q={θ:sinθ+cosθ=2sinθ}Q=\{\theta:\sin\theta+\cos\theta=\sqrt{2}\sin\theta\}Q={θ:sinθ+cosθ=2sinθ} be two sets. Then
P⊂QP\subset QP⊂Q and Q−P≠ϕ Q-P\neq \phi Q−P=ϕ
Q⊄PQ\not\subset PQ⊂P
P⊄QP\not\subset QP⊂Q
P=QP=QP=Q
P={θ:sinθ−cosθ=2cosθ}P=\left\{ \theta :\sin { \theta -\cos { \theta } =\sqrt { 2 } \cos { \theta } } \right\}P={θ:sinθ−cosθ=2cosθ}
sinθ−cosθ=2cosθ\sin { \theta -\cos { \theta } =\sqrt { 2 } \cos { \theta } } sinθ−cosθ=2cosθ
Dividing by cosθ\cos { \theta } cosθ, we get
tanθ−1=2\tan { \theta } -1=\sqrt { 2 } tanθ−1=2
θ=arctan(2+1)\theta =\arctan { (\sqrt { 2 } +1) }θ=arctan(2+1)
Q={θ:sinθ+cosθ=2sinθ}Q=\left\{ \theta :\sin { \theta +\cos { \theta } =\sqrt { 2 } \sin { \theta } } \right\}Q={θ:sinθ+cosθ=2sinθ}
sinθ+cosθ=2sinθ\sin { \theta } +\cos { \theta } =\sqrt { 2 } \sin { \theta } sinθ+cosθ=2sinθ
cosθ=2sinθ−sinθ\cos { \theta } =\sqrt { 2 } \sin { \theta } -\sin { \theta } cosθ=2sinθ−sinθ
cosθ=(2−1)sinθ\cos { \theta } =(\sqrt { 2 } -1)\sin { \theta } cosθ=(2−1)sinθ
tanθ=12−1\tan { \theta } =\dfrac { 1 }{ \sqrt { 2 } -1 } tanθ=2−11
On rationalising, we get
tanθ=2+1\tan { \theta } =\sqrt { 2 } +1tanθ=2+1
θ=arctan(2+1)\theta =\arctan { (\sqrt { 2 } +1) } θ=arctan(2+1)
Hence, sets P and Q both have same values. So P=QP = QP=Q.
প্রমাণ কর যে, sin75∘+sin15∘sin75∘−sin15∘=3 \frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}=\sqrt{3} sin75∘−sin15∘sin75∘+sin15∘=3.
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
1+tan25∘1−tan25∘= \frac{1+\tan 25^{\circ}}{1-\tan 25^{\circ}}= 1−tan25∘1+tan25∘= কত?
4sin712∘cos712∘cos15∘= 4 \sin 7 \frac{1}{2}^{\circ} \cos 7 \frac{1}{2}^{\circ} \cos 15^{\circ}= 4sin721∘cos721∘cos15∘= কত?