লিমিট
limx→0 (1+5x)3x+2x= ?\mathrm{\lim\limits_{x\rightarrow0}\ \left(1+5x\right)^\frac{3x+2}{x}=\ ? }x→0lim (1+5x)x3x+2= ?
e10e^{10} e10
e8e^8 e8
1010 10
8
Evaluate the following limits.
limx→02−x−2+xx\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}x→0limx2−x−2+x.
limx→1(xx−1−1logx) \lim_{x \rightarrow 1} \left ( \frac{x}{x - 1} - \frac{1}{\log{x}} \right ) limx→1(x−1x−logx1) এর মান কত ?
If the function f(x)=(1−x)tanπx2f(x) = (1 - x)\tan \dfrac{{\pi x}}{2}f(x)=(1−x)tan2πx is continuous at x=1x = 1x=1 ,then f(1)=f(1)=f(1)=
limx→0xtan2x−2xtanx(1−cos2x)2 \displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}} x→0lim(1−cos2x)2xtan2x−2xtanx is equal to