পর্যায়ক্রমিক অন্তরজ (Successive Differentiation)

x=a(t+sint),y=a(1cost) \mathrm{x}=\mathrm{a}(\mathrm{t}+\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1-\cos \mathrm{t}) হলে d2ydx2= \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}= ?

Solve: dxdt=a(1+cost);dydt=asint \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{a}(1+\operatorname{cost}) ; \frac{\mathrm{dy}}{\mathrm{dt}}=\operatorname{asint}

dydx=sint1+cost \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin \mathrm{t}}{1+\cos \mathrm{t}} dydx=(1+cost)costsint(sint)(1+cost)2=cost+cos2t+sin2ta(1+cost3 \frac{\mathrm{d}^{\mathrm{y}}}{\mathrm{dx}}=\frac{(1+\operatorname{cost}) \operatorname{cost}-\operatorname{sint}(-\sin t)}{(1+\operatorname{cost})^{2}}=\frac{\operatorname{cost}+\cos ^{2} \mathrm{t}+\sin ^{2} \mathrm{t}}{\mathrm{a}\left(1+\operatorname{cost}^{3}\right.} =costa(1+cost) =\frac{\cos \mathrm{t}}{\mathrm{a}(1+\operatorname{cost})}

পর্যায়ক্রমিক অন্তরজ (Successive Differentiation) টপিকের ওপরে পরীক্ষা দাও